Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(40): 15099-15111, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751481

RESUMO

It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 µm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.


Assuntos
Poliestirenos , Tenebrio , Animais , Polietileno , Tenebrio/metabolismo , Plásticos , Larva/metabolismo , Biodegradação Ambiental , Microplásticos
2.
Water Res ; 245: 120642, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774539

RESUMO

Phosphorus (P) recovery from human manure (HM) is critical for food production security. For the first time, a one-step hydrothermal carbonation (HTC) treatment of HM was proposed in this study for the targeted high-bioavailable P recovery from P-rich hydrochars (PHCs) for direct soil application. Furthermore, the mechanism for the transformation of P speciation in the derived PHCs was also studied at the molecular level. A high portion of P (80.1∼89.3%) was retained in the solid phase after HTC treatment (120∼240°C) due to high metal contents. The decomposition of organophosphorus (OP) into high-bioavailable orthophosphate (Ortho-P) was accelerated when the HTC temperature was increased, reaching ∼97.1% at 210°C. In addition, due to the high content of Ca (40.45±2.37 g/kg) in HM, the HTC process promoted the conversion of low-bioavailable non-apatite inorganic (NAIP) into high-bioavailable apatite inorganic P (AP). In pot experiments with pea seedling growth, the application of newly obtained PHCs significantly promoted plant growth, including average wet/dry weight and plant height. Producing 1 ton of PHCs (210°C) with the same effective P content as agricultural-type calcium superphosphate could result in a net return of $58.69. More importantly, this pathway for P recovery is predicted to meet ∼38% of the current agricultural demand.

3.
Environ Sci Technol ; 57(47): 18940-18949, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37207368

RESUMO

Peracetic acid (PAA) is an emerging alternative disinfectant for saline waters; HOBr or HOCl is known as the sole species contributing to halogenation reactions during PAA oxidation and disinfection. However, new results herein strongly indicated that the brominating agents (e.g., BrCl, Br2, BrOCl, and Br2O) are generated at concentrations typically lower than HOCl and HOBr but played significant roles in micropollutants transformation. The presence of Cl- and Br- at environmentally relevant levels could greatly accelerate the micropollutants (e.g., 17α-ethinylestraiol (EE2)) transformation by PAA. The kinetic model and quantum chemical calculations collectively indicated that the reactivities of bromine species toward EE2 follow the order of BrCl > Br2 > BrOCl > Br2O > HOBr. In saline waters with elevated Cl- and Br- levels, these overlooked brominating agents influence bromination rates of more nucleophilic constituents of natural organic matter and increase the total organic bromine. Overall, this work refines our knowledge regarding the species-specific reactivity of brominating agents and highlights the critical roles of these agents in micropollutant abatement and disinfection byproduct formation during PAA oxidation and disinfection.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bromo , Ácido Peracético , Águas Residuárias , Bromatos , Desinfecção/métodos , Purificação da Água/métodos
4.
Nat Commun ; 14(1): 2881, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208339

RESUMO

There is an urgent need to develop effective and sustainable solutions to reduce water pollution. Heterogeneous Fenton-like catalysts are frequently used to eliminate contaminants from water. However, the applicability of these catalysts is limited due to low availability of the reactive species (RS). Herein, nanoconfinement strategy was applied to encapsulate short-lived RS at nanoscale to boost the utilization efficiency of the RS in Fenton-like reactions. The nanoconfined catalyst was fabricated by assembling Co3O4 nanoparticles in carbon nanotube nanochannels to achieve exceptional reaction rate and excellent selectivity. Experiments collectively suggested that the degradation of contaminants was attributed to singlet oxygen (1O2). Density functional theory calculations demonstrated the nanoconfined space contributes to quantum mutation and alters the transition state to lower activation energy barriers. Simulation results revealed that the enrichment of contaminant on the catalyst reduced the migration distance and enhanced the utilization of 1O2. The synergy between the shell layer and core-shell structure further improved the selectivity of 1O2 towards contaminant oxidation in real waters. The nanoconfined catalyst is expected to provide a viable strategy for water pollution control.

5.
J Hazard Mater ; 452: 131326, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027925

RESUMO

Evidence for plastic degradation by mealworms has been reported. However, little is known about the residual plastics derived from incomplete digestion during mealworm-mediated plastic biodegradation. We herein reveal the residual plastic particles and toxicity produced during mealworm-mediated biodegradation of the three most common microplastics, i.e., polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC). All three microplastics are effectively depolymerized and biodegraded. We discover that the PVC-fed mealworms exhibit the lowest survival rate (81.3 ± 1.5%) and the highest body weight reduction (15.1 ± 1.1%) among the experimental groups by the end of the 24-day experiment. We also demonstrate that the residual PVC microplastic particles are more difficult to depurate and excrete for the mealworms compared to the residual PE and PS particles by using laser direct infrared spectrometry. The levels of oxidative stress responses, including reactive oxygen species, antioxidant enzyme activities, and lipid peroxidation, are also highest in the PVC-fed mealworms. Sub-micron microplastics and small microplastics are found in the frass of mealworms fed with PE, PS, and PVC, with the smallest particles detected at diameters of 5.0, 4.0, and 5.9 µm, respectively. Our findings provide insights into the residual microplastics and microplastic-induced stress responses in macroinvertebrates under micro(nano)plastics exposure.


Assuntos
Poliestirenos , Tenebrio , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Tenebrio/metabolismo , Polietileno/toxicidade , Polietileno/metabolismo , Larva/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Cloreto de Polivinila/toxicidade
6.
Sci Total Environ ; 859(Pt 2): 160237, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36402329

RESUMO

Wastewater recycling helps address the challenge of microalgae biomass commercialization by allowing for efficient resource recovery. In this study, three conventional harvesting methods, including centrifugation, microfiltration, and flocculation sedimentation, were investigated to explore the effects of harvesting methods on the characteristics of recycled wastewater and the growth of microalgae to select a suitable harvesting method for the microalgal wastewater recycling system. During the wastewater recycling process, the least amount of accumulated substances was exhibited in the wastewater recycled by microfiltration, followed by centrifugation, and the most by flocculation sedimentation. After 4 batches of cultivation, microalgal biomass harvested from centrifugation wastewater and microfiltration wastewater was 21.26 % and 13.54 % higher than that from flocculation wastewater, respectively. Lipids, carbohydrates and pigments were all increased by varying degrees. Additionally, flocculation sedimentation was not suitable for the microalgal wastewater recycling process since the low residual nutrients, high salinity, and excessive algal organic matter severely inhibited the growth of microalgae. Under the regulation of phytohormones, microalgae increased their energy reserves, enhanced photosynthesis, and improved their defense capability to resist the increasing abiotic stress. This study provides scientific support for the selection of suitable harvesting technology during the microalgal wastewater recycling process.


Assuntos
Microalgas , Águas Residuárias , Floculação , Biomassa , Reciclagem
7.
J Hazard Mater ; 445: 130536, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469990

RESUMO

Thiosulfate (S2O32-) has been proven to be an effective promoter of Fenton-like reactions by accelerating the metal ions cycle. However, up to now, little is known about the role of sulfur transformation and intermediate sulfur in the regulation of metal chemical cycle and reactive species production. Herein, free Cu(II) was selected as catalyst for the activation of H2O2. The introduction of S2O32- significantly enhanced the degradation of benzoic acid, and the degradation rate (kobs) was 5.8 times that of Cu(II)/H2O2 system. The kinetic model revealed the transformation of sulfur species and demonstrated that sulfides (i.e., HS-/S2-, S2O32-) and S0 were the dominant electron donor for the reduction of Cu(II) into Cu(I). Consequently, the reduction and complexation roles of S2O32- significantly resolve the rate-limiting step and broaden the pH range of in Fenton-like reactions. Evidence for the critical role of high-valent copper (Cu(III)) and HO• on BA degradation was obtained by scavengers experiments, electron paramagnetic resonance and fluorescent probes. Meanwhile, the Cu(II)/H2O2/S2O32- system also exhibited satisfactory anti-interference ability of the various matrix. Overall, this study offers mechanistic insight into sulfidation in Cu chemical cycle and Cu(III) generation, and highlights the potential of S2O32- for Fenton-like reactions to control pollutants.


Assuntos
Cobre , Peróxido de Hidrogênio , Oxirredução , Tiossulfatos , Catálise , Enxofre
8.
Chemosphere ; 311(Pt 1): 137069, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332735

RESUMO

Heat-activated PDS oxidation (HAPO) has been widely used for in-situ chemical oxidation (ISCO) of micropollutants in groundwater, whereas the aesthetic demerit of additional SO42- production is largely overlooked. In this study, the sulfidogenic process is used to offset the aesthetic demerit, and the production of SO42- is then employed to recycle heavy metals. The innovative integration technology with PDS oxidation and sulfidogenic process via the bridging role of SO42- was reported to remove micropollutants and heavy metals in groundwater simultaneously. HAPO could completely degrade CBZ, producing 400 mg/L SO42- with the addition of 0.50 g/L PDS. Sulfate-reducing bacteria (SRB) utilize SO42- generated from HAPO as the electron acceptor in the sulfidogenic process, removing and recycling Cd(II) via the precipitation of CdS. The SRB tolerance experiment revealed the viability of PDS oxidation coupled with the sulfidogenic process via the bridging role of SO42-. Overall, the integration technology is a green and promising technology for simultaneous micropollutants removal and heavy metals recycling in groundwater.


Assuntos
Desulfovibrio , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Cádmio , Sulfatos/metabolismo , Carbamazepina , Oxirredução , Desulfovibrio/metabolismo
9.
Environ Sci Technol ; 56(23): 17310-17320, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350780

RESUMO

Biodegradation of polystyrene (PS) in mealworms (Tenebrio molitor lavae) has been identified with commercial PS foams. However, there is currently limited understanding of the influence of molecular weight (MW) on insect-mediated plastic biodegradation and the corresponding responses of mealworms. In this study, we provided the results of PS biodegradation, gut microbiome, and metabolome by feeding mealworms with high-purity PS microplastics with a wide variety of MW. Over 24 days, mealworms (50 individuals) fed with 0.20 g of PS showed decreasing removal of 74.1 ± 1.7, 64.1 ± 1.6, 64.4 ± 4.0, 73.5 ± 0.9, 60.6 ± 2.6, and 39.7 ± 4.3% for PS polymers with respective weight-average molecular weights (Mw) of 6.70, 29.17, 88.63, 192.9, 612.2, and 1346 kDa. The mealworms degraded most PS polymers via broad depolymerization but ultrahigh-MW PS via limited-extent depolymerization. The gut microbiome was strongly associated with biodegradation, but that with low- and medium-MW PS was significantly distinct from that with ultrahigh-MW PS. Metabolomic analysis indicated that PS biodegradation reprogrammed the metabolome and caused intestinal dysbiosis depending on MW. Our findings demonstrate that mealworms alter their gut microbiome and intestinal metabolic pathways in response to in vivo biodegradation of PS polymers of various MWs.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Humanos , Animais , Tenebrio/metabolismo , Poliestirenos , Plásticos , Microbioma Gastrointestinal/fisiologia , Peso Molecular , Polímeros , Larva/metabolismo , Metaboloma
10.
Membranes (Basel) ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629813

RESUMO

In this study, the water purification effect and membrane fouling mechanism of two powdered activated carbons (L carbon and S carbon) enhancing Polyvinylidene Fluoride (PVDF) ultrafiltration (UF) membranes for surface water treatment were investigated. The results indicated that PAC could effectively enhance membrane filtration performance. With PAC addition, organic removal was greatly enhanced compared with direct UF filtration, especially for small molecules, i.e., the S-UF had an additional 25% removal ratio of micro-molecule organics than the direct UF. The S carbon with the larger particle size and lower specific surface area exhibited superior performance to control membrane fouling, with an operation duration of S-UF double than the direct UF. Therefore, the particle size and pore structure of carbon are the two key parameters that are essential during the PAC-UF process. After filtration, acid and alkaline cleaning of UF was conducted, and it was found that irreversible fouling contributed the most to total filtration resistance, while the unrecoverable irreversible resistance ratio with acid cleaning was greater than that with alkaline cleaning. With PAC, irreversible UF fouling could be relieved, and thus, the running time could be extended. In addition, the membrane foulant elution was analyzed, and it was found to be mainly composed of small and medium molecular organic substances, with 12% to 21% more polysaccharides than proteins. Finally, the hydrophilicity of the elution was examined, and it was observed that alkaline cleaning mainly eluted large, medium, and small molecules of hydrophilic and hydrophobic organic matter, while acid cleaning mainly eluted small molecules of hydrophilic organic matter.

11.
Water Res ; 217: 118411, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429879

RESUMO

The microalgal wastewater cyclic cultivation technology (AWC2T) proposed in this study helps address the challenges surrounding water scarcity and ecological sustainability in a clean, resource-efficient, and affordable manner. A novel microalgae growth model (AGM) elucidating the growth mechanisms of microalgae in the AWC2T system was established for dynamic simulations and design optimization. The recycled wastewater accelerated the growth rate of microalgae, and increased biomass and lipids content by 11% and 37.65%, respectively, after 8 batches of cultivation. The accumulated soluble algae products (SAPs) enhanced microalgae growth by providing nutrients and regulating metabolism. In addition, scenario simulations illustrated the excellent long-term performance of the AWC2T system. 100% recycling of microalgal wastewater could save 0.3% N and 54.36% P. The techno-economic analysis (TEA) and life cycle assessment (LCA) explored how economic and sustainability principles can be embedded into the life cycle of microalgae production. The AWC2T led to outcomes vastly superior to non-cyclic technology by enabling the high-level recovery of resources, providing substantial benefits, enhancing contingency and risk resistance, and offsetting a host of unintended environmental effects.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Reciclagem , Águas Residuárias
12.
Environ Sci Technol ; 56(2): 1300-1309, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34965096

RESUMO

Peracetic acid (PAA) is an emerging oxidant and disinfectant for wastewater (WW) treatment due to limited harmful disinfection byproduct (DBP) formation. Nitrite (NO2-) is a ubiquitous anion in water, but the impact of NO2- on PAA oxidation and disinfection has been largely overlooked. This work found for the first time that NO2- could significantly promote the oxidation of sulfonamide antibiotics (SAs) by PAA. Unexpectedly, the reactive nitrogen species (RNS), for example, peroxynitrite (ONOO-), rather than conventional organic radicals (R-O•) or reactive oxygen species (ROS), played major roles in SAs degradation. A kinetic model based on first-principles was developed to elucidate the reaction mechanism and simulate reaction kinetics of the PAA/NO2- process. Structural activity assessment and quantum chemical calculations showed that RNS tended to react with an aromatic amine group, resulting in more conversion of NO2--N to organic-N. The formation of nitrated and nitrosated byproducts and the enhancement of trichloronitromethane formation potential might be a prevalent problem in the PAA/NO2- process. This study provides new insights into the reaction of PAA with NO2- and sheds light on the potential risks of PAA in WW treatment in the presence of NO2-.


Assuntos
Ácido Peracético , Purificação da Água , Antibacterianos , Desinfecção , Nitritos , Espécies Reativas de Nitrogênio , Sulfonamidas , Purificação da Água/métodos
13.
ACS Appl Mater Interfaces ; 13(26): 30458-30467, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34159788

RESUMO

Liquid ammonia is considered a sustainable liquid fuel and an easily transportable carrier of hydrogen energy; however, its synthesis processes are energy-consuming, high cost, and low yield rate. Herein, we report the electrocatalytic reduction of nitrate (NO3-) (ERN) to ammonia (NH3) with nickel phosphide (Ni2P) used as a noble metal-free cathode. Ni2P with (111) facet was grown in situ on nickel foam (NFP), which was regarded as a self-supporting cathode for ERN to synthesis NH3 with high yield rate (0.056 mmol h-1 mg-1) and superior faradaic efficiency of 99.23%. The derived atomic H (*H), verified by a quenching experiment and an electron spin resonance (ESR) technique, effectively enhanced the high selectivity for NH3 generation. DFT calculations indicated that *NO3 was deoxygenated to *NO2 and *NO, and *NO was subsequently hydrogenated with *H to generate NH3 with an energy releasing process (ΔG < 0). OLEMS also proved that NO was the merely gas intermediate. NFP exhibited the unique superhydrophilic surface, metallic properties, low impedance, and abundant surface sites, favorable for adsorption of NO3-, generation of *H, and then hydrogenation of NO3-. Hence, NFP cathode showed high selectivity for NH3 (89.1%) in ERN. NFP with long-term stability and low energy consumption provides a facile strategy for synthesis of NH3 and elimination of NO3- contamination.

14.
Water Res ; 182: 115972, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32650150

RESUMO

Vibration membrane filtration has been confirmed as an effective method to improve algae separation from water. However, the fouling evolution process and the antifouling mechanism are not well understood. In this study, a novel hybrid method based on a dynamics model was proposed, a comprehensive evaluation was conducted, and the critical vibration frequency for accurate analysis and prediction of membrane fouling was developed. The dynamics model was studied with an improved collision-attachment model by considering all the concurrent and synergistic effects of the hydrodynamic interactions acting on algae. From the perspective of potential energy, the improved model systematically elucidated the reason why the antifouling performance was enhanced when the vibration frequency varied from 1 Hz to 5 Hz. In addition, the Technique for Order Preference by Similarity to Ideal Solution-grey relational analysis (TOPSIS-GRA) method with combined weights was incorporated for the first time to provide direct comprehensive evaluation evidence to determine the effect of the vibration frequency on membrane fouling. It was found that increasing the vibration frequency could not alleviate membrane fouling caused by extracellular organic matter. Moreover, the concept of a critical vibration frequency was proposed using genetic algorithm optimized back propagation neural network, and the energy consumption was analyzed. This combination could provide an effective means to choose the most appropriate vibration frequency, thereby improving the efficiency of the vibration membrane system in the algae separation process.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração , Vibração , Água
15.
Materials (Basel) ; 13(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098360

RESUMO

Animal-keratin-wastes (AKWs), horns (HN), hair (HR), puffed waterfowl feathers (PF), hydrolyzed waterfowl feathers (HF), hydrolyzed fish meal (HM), crab meat (CM), feathers (FR), shrimp chaff (SC), fish scales (FS), and waste leather (WL) were used as modifiers to prepare animal-keratin-wastes biochars (AKWs-BC) derived from Trapa natans husks (TH). AKWs-BC have a well-developed microporous structure with a pore size mainly below 3 nm. Due to the doping of AKWs, the surface chemical properties of AKWs-BC (especially N functional groups) were improved. The utilization of APWs not only realizes the resource utilization of waste, but also can be used to prepare high-performance biochars.

16.
J Hazard Mater ; 386: 121656, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784139

RESUMO

Tetracyclines (TCs) discharged from livestock wastewater have received worldwide concerns owing to their potential threats to the ecosystem and human health. Advanced oxidation processes always exhibit low efficiency to remove TCs in livestock wastewater due to the radical scavenging by water matrices. Herein, we report selective elimination of TCs by peroxymonosulfate (PMS) in livestock wastewater. A kinetic model was developed to describe the rapid degradation of TCs by PMS in the real livestock wastewater. The radical scavenging study and electron paramagnetic resonance (EPR) technique excluded the contribution of radical species (e.g., SO4-) in the PMS-promoted oxidation of TCs. Theoretical calculations revealed the electrophilic attacks of PMS most likely located on the B-ring of TCs. Transformation product analysis further elucidated that hydroxylation dominated in the PMS-promoted oxidation of TCs, and N-demethylation also significantly contributed to chlorotetracycline (CTC) oxidation by PMS. These results demonstrate a promising strategy to eliminate TCs in livestock wastewater, because PMS shows specific reactivity towards TCs, and thus suffers less interference from the complicated water matrices.


Assuntos
Antibacterianos/química , Gado , Peróxidos/química , Tetraciclinas/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Animais , Desmetilação , Espectroscopia de Ressonância de Spin Eletrônica , Sequestradores de Radicais Livres/química , Cinética , Oxirredução
17.
Water Res ; 165: 114930, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31426006

RESUMO

Nickel phosphide (Ni2P) is an emerging efficient catalyst for the hydrogen evolution and water splitting. Herein, we report that Ni2P is also a promising catalyst for enhancing electrochemical dechlorination of chlorinated disinfection byproducts (DBPs). Amorphous Ni2P (ANP) mini-nanorod arrays were in-situ fabricated on nickel foam (NF) via a facile phosphidation process, and then used as a binder-free cathode for electrochemical dechlorination of trichloroacetic acid (TCAA). Results showed that ANP exhibited superior performance on electrochemical dechlorination of TCAA than other metal cathodes (e.g., NF and Pd/C). Scavenging experiments and electron spin resonance (ESR) technique indicated that atomic H* was generated from water reduction through ANP catalysis, and primarily contributed to TCAA dechlorination. Indeed, the superhydrophilic surface of ANP favored electrocatalyst/electrolyte contact, and its low impedance further afforded rapid electron transport from the electrode to water or protons for atomic H* generation. The kinetic modelling and mass balance evaluation revealed the transformation mechanism of TCAA dechlorination. This study is among the first to develop ANP as a binder-free cathode for electrochemical dechlorination, and have important implications for eliminating chlorinated DBPs in water.


Assuntos
Halogenação , Níquel , Catálise , Eletrodos , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...