Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Res ; 44(4): 377-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22446602

RESUMO

In China, Monascus spp., a traditional fungus used in fermentation, is used as a natural food additive. Monascus spp. can produce a secondary metabolite, monacolin K namely, which is proven to be a cholesterol-lowering and hypotensive agent. Hence, recently, many researchers have begun focusing on how to increase the production of monacolin K by Monascus purpureus. In the present study, we investigated the effect of the fungal elicitor and the mutagenesis of UV & LiCl on the amount of monacolin K produced by Monascus purpureus. The fugal elicitor, Sporobolomyces huaxiensis, was isolated from tea leaves and its filtrate was added into the culture filtrate of Monascus purpureus during growth to induct the production of monacolin K. The results showed that the highest amount of monacolin K produced by the liquid fermentation was 446.92 mg/mL, which was produced after the fungal elicitor was added to the culture filtrate of Monascus purpureus on the day 4; this amount was approximately 6 times greater than that of the control culture filtrate, whereas the highest amount of monacolin K produced by the mutated strain was 3 times greater than the control culture after the irradiation of UV light in the presence of 1.0 % LiCl in the medium.


Assuntos
Basidiomycota/fisiologia , Lovastatina/biossíntese , Monascus/metabolismo , Mutação , China , Meios de Cultura , Cloreto de Lítio , Monascus/genética , Monascus/efeitos da radiação , Raios Ultravioleta
2.
Biol. Res ; 44(4): 377-382, 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-626738

RESUMO

In China, Monascus spp., a traditional fungus used in fermentation, is used as a natural food additive. Monascus spp. can produce a secondary metabolite, monacolin K namely, which is proven to be a cholesterol-lowering and hypotensive agent. Hence, recently, many researchers have begun focusing on how to increase the production of monacolin K by Monascus purpureus. In the present study, we investigated the effect of the fungal elicitor and the mutagenesis of UV & LiCl on the amount of monacolin K produced by Monascus purpureus. The fugal elicitor, Sporobolomyces huaxiensis, was isolated from tea leaves and its filtrate was added into the culture filtrate of Monascus purpureus during growth to induct the production of monacolin K. The results showed that the highest amount of monacolin K produced by the liquid fermentation was 446.92 mg/mL, which was produced after the fungal elicitor was added to the culture filtrate of Monascus purpureus on the day 4; this amount was approximately 6 times greater than that of the control culture filtrate, whereas the highest amount of monacolin K produced by the mutated strain was 3 times greater than the control culture after the irradiation of UV light in the presence of 1.0 % LiCl in the medium.


Assuntos
Basidiomycota/fisiologia , Lovastatina/biossíntese , Mutação , Monascus/metabolismo , China , Meios de Cultura , Cloreto de Lítio , Monascus/genética , Monascus/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA