Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
2.
Adv Mater ; 36(7): e2310237, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009650

RESUMO

The experimental replicability of highly efficient perovskite solar cells (PSCs) is a persistent challenge faced by laboratories worldwide. Although trace impurities in raw materials can impact the experimental reproducibility of high-performance PSCs, the in situ study of how trace impurities affect perovskite film growth is never investigated. Here, light is shed on the impact of inevitable water contamination in lead iodide (PbI2 ) on the replicability of device performance, mainly depending on the synthesis methods of PbI2 . Through synchrotron-based structure characterization, it is uncovered that even slight additions of water to PbI2 accelerate the crystallization process in the perovskite layer during annealing. However, this accelerated crystallization also results in an imbalance of charge-carrier mobilities, leading to a degradation in device performance and reduced longevity of the solar cells. It is also found that anhydrous PbI2 promotes a homogenous nucleation process and improves perovskite film growth. Finally, the PSCs achieve a remarkable certified power conversion efficiency of 24.3%. This breakthrough demonstrates the significance of understanding and precisely managing the water content in PbI2 to ensure the experimental replicability of high-efficiency PSCs.

3.
ACS Nano ; 17(22): 23010-23019, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37948332

RESUMO

Hybrid plasmonic nanostructures have gained enormous attention in a variety of optoelectronic devices due to their surface plasmon resonance properties. Self-assembled hybrid metal/quantum dot (QD) architectures offer a means of coupling the properties of plasmonics and QDs to photodetectors, thereby modifying their functionality. The arrangement and localization of hybrid nanostructures have an impact on exciton trapping and light harvesting. Here, we present a hybrid structure consisting of self-assembled gold nanospheres (Au NSs) embedded in a solid matrix of PbS QDs for mapping the interface structures and the motion of charge carriers. Grazing-incidence small-angle X-ray scattering is utilized to analyze the localization and spacing of the Au NSs within the hybrid structure. Furthermore, by correlating the morphology of the Au NSs in the hybrid structure with the corresponding differences observed in the performance of photodetectors, we are able to determine the impact of interface charge carrier dynamics in the coupling structure. From the perspective of architecture, our study provides insights into the performance improvement of optoelectronic devices.

4.
ACS Appl Mater Interfaces ; 15(40): 47682-47691, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756141

RESUMO

The humidity influence on the electronic and ionic resistance properties of thin post-treated poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films is investigated. In particular, the resistance of these PEDOT:PSS films post-treated with three different concentrations (0, 0.05, and 0.35 M) of ethyl-3-methylimidazolium dicyanamide (EMIM DCA) is measured while being exposed to a defined humidity protocol. A resistance increase upon elevated humidity is observed for the 0 M reference sample, while the EMIM DCA post-treated samples demonstrate a reverse behavior. Simultaneously performed in situ grazing-incidence small-angle X-ray scattering (GISAXS) measurements evidence changes in the film morphology upon varying the humidity, namely, an increase in the PEDOT domain distances. This leads to a detriment in the interdomain hole transport, which causes a rise in the resistance, as observed for the 0 M reference sample. Finally, electrochemical impedance spectroscopy (EIS) measurements at different humidities reveal additional contributions of ionic charge carriers in the EMIM DCA post-treated PEDOT:PSS films. Therefrom, a model is proposed, which describes the hole and cation transport in different post-treated PEDOT:PSS films dependent on the ambient humidity.

5.
Nanoscale Horiz ; 8(3): 383-395, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36723240

RESUMO

The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.

6.
Opt Express ; 30(2): 1337-1350, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209296

RESUMO

Efficient control of the phase and polarization of light is of significant importance in modern optics and photonics. However, traditional methods are often accompanied with cascaded and bulky designs that cannot fulfill the ongoing demand for further integrations. Here, a single-layered metasurface composed of nonvolatile phase-change material Ge2Sb2Se4Te1 (GSST) is proposed with tunable spin-orbit interactions in subwavelength scale. According to the spin-dependent destructive or constructive interference, asymmetric transmission for circularly polarized incidence (extinction ratio > 8:1) can be achieved when GSST is in an amorphous state. Moreover, when GSST changes to crystalline state, reversed chiral transmission (extinction ratio > 12:1) can be observed due to the existence of intrinsic chirality. In addition, as the average cross-polarized transmitted amplitude is larger than 85%, arbitrary wavefront manipulations can be achieved in both states simultaneously based on the theory of Pancharatnam-Berry phase. As a proof of concept, several functional metasurface devices are designed and characterized to further demonstrate the validation of our design methodology. It is believed that these multifunctional devices with ultrahigh compactness are promising for various applications including chiroptical spectroscopy, EM communication, chiral imaging, and information encryption.

7.
ACS Appl Mater Interfaces ; 14(2): 2958-2967, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989234

RESUMO

Crystal orientations are closely related to the behavior of photogenerated charge carriers and are vital for controlling the optoelectronic properties of perovskite solar cells. Herein, we propose a facile approach to reveal the effect of lattice plane orientation distribution on the charge carrier kinetics via constructing CsBr-doped mixed cation perovskite phases. With grazing-incidence wide-angle X-ray scattering measurements, we investigate the crystallographic properties of mixed perovskite films at the microscopic scale and reveal the effect of the extrinsic CsBr doping on the stacking behavior of the lattice planes. Combined with transient photocurrent, transient photovoltage, and space-charge-limited current measurements, the transport dynamics and recombination of the photogenerated charge carriers are characterized. It is demonstrated that CsBr compositional engineering can significantly affect the perovskite crystal structure in terms of the orientation distribution of crystal planes and passivation of trap-state densities, as well as simultaneously facilitate the photogenerated charge carrier transport across the absorber and its interfaces. This strategy provides unique insight into the underlying relationship between the stacking pattern of crystal planes, photogenerated charge carrier transport, and optoelectronic properties of solar cells.

8.
ACS Appl Mater Interfaces ; 13(38): 45890-45897, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34520183

RESUMO

Compared with conventional mirrors that behave as isotropic electromagnetic (EM) reflectors, metamirrors composed of periodically aligned artificial meta-atoms exhibit increased degrees of freedom for EM manipulations. However, the functionality of most metamirrors is fixed by design, and how to achieve active EM control is still elusive. Here, we propose a multistate metamirror based on the nonvolatile phase change material Ge2Sb2Te5 (GST) with four distinct functionalities that can be realized in the infrared region by exploiting the temperature-activated phase transition. When varying the crystallinity of GST, the metamirror has the capability to perform as a right-handed circular polarization chiral mirror, a narrowband achiral mirror, a left-handed circular polarization chiral mirror, or a broadband achiral mirror, respectively. The inner physics is further explained by the construction or cancellation of extrinsic two-dimensional chirality. As a proof of concept, experimental verification is carried out and the measured results agree well with their simulated counterparts. Such a multifunctional tunable metamirror could address a wide range of applications from sensing and spectroscopy to analytical chemistry and imaging.

9.
Materials (Basel) ; 14(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925768

RESUMO

As promising building blocks for functional materials and devices, metasurfaces have gained widespread attention in recent years due to their unique electromagnetic (EM) properties, as well as subwavelength footprints. However, current designs based on discrete unit cells often suffer from low working efficiencies, narrow operation bandwidths, and fixed EM functionalities. Here, by employing the superior performance of a continuous metasurface, combined with the reconfigurable properties of a phase change material (PCM), a dual-functional meta-grating is proposed in the infrared region, which can achieve a broadband polarization conversion of over 90% when the PCM is in an amorphous state, and a perfect EM absorption larger than 91% when the PCM changes to a crystalline state. Moreover, by arranging the meta-grating to form a quasi-continuous metasurface, subsequent simulations indicated that the designed device exhibited an ultralow specular reflectivity below 10% and a tunable thermal emissivity from 14.5% to 91%. It is believed that the proposed devices with reconfigurable EM responses have great potential in the field of emissivity control and infrared camouflage.

10.
ACS Appl Mater Interfaces ; 12(47): 52643-52651, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33190484

RESUMO

Perovskite solar cells (PSCs) have been developed as a promising photovoltaic technology because of their excellent photovoltaic performance. However, interfacial recombination and charge carrier transport losses at the surface greatly limit the performance and stability of PSCs. In this work, the fabrication of high-quality PSCs based on methylammonium lead iodide with excellent ambient stability is reported. An anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), is introduced to simultaneously passivate the defect states and stabilize the cubic phase of the perovskite film. The SDBS located at grain boundaries and the surface of the active layer can effectively passivate under-coordinated lead ions and protect the perovskite components from water-induced degradation. As a result, a champion power conversion efficiency (PCE) of 19.42% is achieved with an open-circuit voltage (VOC) of 1.12 V, a short-circuit current (JSC) of 23.23 mA cm-2, and a fill factor (FF) of 74% in combination with superior moisture stability. The SDBS-passivated devices retain 80% of their initial average PCE after 2112 h of storage under ambient conditions.

11.
ACS Nano ; 12(5): 4903-4908, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29701956

RESUMO

Because silicon transistors are rapidly approaching their scaling limit due to short-channel effects, alternative technologies are urgently needed for next-generation electronics. Here, we demonstrate ultrathin ZnO piezotronic transistors with a ∼2 nm channel length using inner-crystal self-generated out-of-plane piezopotential as the gate voltage to control the carrier transport. This design removes the need for external gate electrodes that are challenging at nanometer scale. These ultrathin devices exhibit a strong piezotronic effect and excellent pressure-switching characteristics. By directly converting mechanical drives into electrical control signals, ultrathin piezotronic devices could be used as active nanodevices to construct the next generation of electromechanical devices for human-machine interfacing, energy harvesting, and self-powered nanosystems.

12.
Adv Mater ; 30(16): e1800066, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29534314

RESUMO

Smart skin is expected to be stretchable and tactile for bionic robots as the medium with the ambient environment. Here, a stretchable triboelectric-photonic smart skin (STPS) is reported that enables multidimensional tactile and gesture sensing for a robotic hand. With a grating-structured metal film as the bioinspired skin stripe, the STPS exhibits a tunable aggregation-induced emission in a lateral tensile range of 0-160%. Moreover, the STPS can be used as a triboelectric nanogenerator for vertical pressure sensing with a maximum sensitivity of 34 mV Pa-1 . The pressure sensing characteristics can remain stable in different stretching conditions, which demonstrates a synchronous and independent sensing property for external stimuli with great durability. By integrating on a robotic hand as a conformal covering, the STPS shows multidimensional mechanical sensing abilities for external touch and different gestures with joints bending. This work has first demonstrated a triboelectric-photonic coupled multifunctional sensing terminal, which may have great applications in human-machine interaction, soft robots, and artificial intelligence.


Assuntos
Fótons , Gestos , Humanos , Pele , Tato , Percepção do Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...