Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Food Chem ; 413: 135575, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764160

RESUMO

Inhibition of peel de-greening in postharvest bananas under high temperature storage, resulting in green ripening, causes significant deterioration in fruit quality. Herein, we reported that cold treatment accelerated chlorophyll degradation of postharvest banana fruit at 30 °C, which was associated with the upregulated expression of MaCBR (Chlorophyll b reductase) and MaSGR1 (Stay-green 1). Moreover, cold treatment increased the expression of C-repeat binding factor MaCBF1. MaCBF1 bound directly to the promoters of MaCBR and MaSGR1 and activated their expressions. More importantly, transient expression of MaCBF1 in bananas enhanced chlorophyll degradation and weakened the repression of de-greening caused by high temperature. In summary, the cold treatment promotes chlorophyll catabolism by activating MaCBF1-induced transcriptional activation of MaCBR and MaSGR1, and attenuates high temperature-caused green ripening in bananas. These results study expand the understanding of the molecular events of high temperature-inhibited chlorophyll degradation and provide a feasible strategy to alleviate green ripening of banana fruit.


Assuntos
Musa , Musa/química , Temperatura Baixa , Temperatura Alta , Regiões Promotoras Genéticas , Clorofila/análise , Frutas/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398806

RESUMO

Several lines of evidence have implicated the involvement of the phytohormone gibberellin (GA) in modulating leaf senescence in plants. However, upstream transcription factors (TFs) that regulate GA biosynthesis in association with GA-mediated leaf senescence remain elusive. In the current study, we report the possible involvement of a TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) TF BrTCP21 in GA-delayed leaf senescence in Chinese flowering cabbage. Exogenous GA3 treatment maintained a higher value of maximum PSII quantum yield (Fv/Fm) and total chlorophyll content, accompanied by the repression of the expression of senescence-associated genes and chlorophyll catabolic genes, which led to the delay of leaf senescence. A class I member of TCP TFs BrTCP21, was further isolated and characterized. The transcript level of BrTCP21 was low in senescing leaves, and decreased following leaf senescence, while GA3 could keep a higher expression level of BrTCP21. BrTCP21 was further found to be a nuclear protein and exhibit trans-activation ability through transient-expression analysis in tobacco leaves. Intriguingly, the electrophoretic mobility shift assay (EMSA) and transient expression assay illustrated that BrTCP21 bound to the promoter region of a GA biosynthetic gene BrGA20ox3, and activated its transcription. Collectively, these observations reveal that BrTCP21 is associated with GA-delayed leaf senescence, at least partly through the activation of the GA biosynthetic pathway. These findings expand our knowledge on the transcriptional mechanism of GA-mediated leaf senescence.


Assuntos
Brassica/fisiologia , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Envelhecimento , Sequência de Bases , Brassica/classificação , Conservação de Alimentos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Fenótipo , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416297

RESUMO

The plant hormone jasmonic acid (JA) has been recognized as an important promoter of leaf senescence in plants. However, upstream transcription factors (TFs) that control JA biosynthesis during JA-promoted leaf senescence remain unknown. In this study, we report the possible involvement of a TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) TF BrTCP7 in methyl jasmonate (MeJA)-promoted leaf senescence in Chinese flowering cabbage. Exogenous MeJA treatment reduced maximum quantum yield (Fv/Fm) and total chlorophyll content, accompanied by the increased expression of senescence marker and chlorophyll catabolic genes, and accelerated leaf senescence. To further understand the transcriptional regulation of MeJA-promoted leaf senescence, a class I member of TCP TFs BrTCP7 was examined. BrTCP7 is a nuclear protein and possesses trans-activation ability through subcellular localization and transcriptional activity assays. A higher level of BrTCP7 transcript was detected in senescing leaves, and its expression was up-regulated by MeJA. The electrophoretic mobility shift assay and transient expression assay showed that BrTCP7 binds to the promoter regions of a JA biosynthetic gene BrOPR3 encoding OPDA reductase3 (OPR3) and a chlorophyll catabolic gene BrRCCR encoding red chlorophyll catabolite reductase (RCCR), activating their transcriptions. Taken together, these findings reveal that BrTCP7 is associated with MeJA-promoted leaf senescence at least partly by activating JA biosynthesis and chlorophyll catabolism, thus expanding our knowledge of the transcriptional mechanism of JA-mediated leaf senescence.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Brassica/classificação , Brassica/genética , Brassica/metabolismo , Senescência Celular , Regulação da Expressão Gênica de Plantas , Fenótipo , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA