Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Immunol Methods ; 530: 113697, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823576

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most severe swine diseases causing great economic losses for the international swine industry. Non-structural protein 4 (NSP4) is critical to the life cycle of PRRSV and contains dominant B cell epitopes. This study prepared a monoclonal antibody against Nsp4, and 2D11, which contained the sequence 138KQGGGIVTRPSGQFCN153, was confirmed as the epitope. A 2D11-based double antibody sandwich enzyme-linked immunosorbent assay (dasELISA) was next developed with a cut value of 0.1987. A total of 1354 pig serum samples were detected by dasELISA and compared to a commercial ELISA kit (N-coated iELISA), resulting in a positive coincidence rate of 98.8% and negative coincidence rate of 96.9%. A total of 119 sera were positive by dasELISA while negative by iELISA. Higher positive rates by dasELISA were found in pig farms where PRRSV antibody levels varied widely. These results indicated that the dasELISA was a useful tool to detect PRRSV antibody in clinical samples.

2.
Opt Express ; 31(22): 37019-37029, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017839

RESUMO

We have proposed and demonstrated a weak acoustic signal detection technology based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). Non-contact acoustic signals transmitting through air gap between the sound source and the receiver are difficult to detect due to fast attenuation. In order to improve the detection ability of non-contact weak acoustic signals, we demonstrate that multi-mode fiber (MMF) is a better solution than single-mode fiber (SMF) benefiting from its larger core and higher Rayleigh backscattering (RBS) capture coefficient. The frequency signal-to-noise ratio (SNR) has been enhanced by 9.26 dB. Then, with the help of 3D printing technology, elastomers have been designed to further enhance the detection ability due to the high-sensitive response to acoustic signals. Compared with the previous reported "I" type elastomer, the location and frequency SNR enhancement caused by our new proposed "n" type elastomer are 8.39 dB and 11.02 dB in SMF based system. The values are further improved to 10.51 dB and 13.38 dB in MMF and "n" type elastomer integrated system. And a phase-pressure sensitivity of -94.62 dB re rad/µPa has been achieved at 2.5 kHz. This non-contact weak acoustic signal detection technique has great application potential in the quasi-distributed partial discharge (PD) detection of smart grid.

3.
ACS Nano ; 17(19): 19136-19143, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740252

RESUMO

Combining the features of the host-guest system and chirality is an efficient strategy to achieve circularly polarized luminescence (CPL). Herein, well-defined chiral carbon nanodot (chirCND) arrays were confined-synthesized by low-temperature calcination of a chiral amino acid loaded metal-organic framework (MOF) to induce high CPL. An achiral porous pyrene-based MOF NU-1000 thin film as the host template was prepared by a liquid-phase epitaxial layer-by-layer fashion, and chiral amino acids as the carbon sources could be confined in the porous MOF and carbonized to homogeneous and ultrasmall chirCND arrays, resulting in a chirCNDs@NU-1000 thin film (l-CNDsx@NU-1000; x = l-cysteine (cys), l-serine, l-histidine, l-glutamic acid, and l-pyroglutamic acid). The results show the pristine chirCNDs by directly carbonizing chiral amino acids hardly endow them with a CPL property. By contrast, benefiting from the arrayed confinement and coordination interaction between chirCNDs and NU-1000, the chirality transfer on the excited state of chirCNDs@NU-1000 is enabled, leading to strong CPL performance (a high luminescence dissymmetry factor glum of l-CNDscys@NU-1000 thin film reached 1.74 × 10-2). This study of chirCNDs encapsulated in fluorescent MOF thin films provides a strategy for developing uniform chiral carbon nanoarrays and offers chiral host-guest thin-film materials for optical applications.

4.
Small ; 19(18): e2208238, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36734211

RESUMO

The acid-base properties of supports have an enormous impact on catalytic reactions to regulate the selectivity and activity of supported catalysts. Herein, a train of Pd-X-UiO-66 (X = NO2 , NH2 , and CH3 ) catalysts with different acidity/alkalinity functional groups and encapsulated Pd(II) species is first developed, whose activities in dimethyl carbonate (DMC) catalysis are then investigated in details. Thereinto, the Pd-NO2 -UiO-66 catalyst with acidity functionalization exhibits the best catalytic behavior: the DMC selectivity stemmed from methyl nitrite (MN) is up to 68%, the conversion of CO is 73.4%. The obtained experimental results demonstrate that the NO2 group not only affected the interaction between X-UiO-66 and Pd(II) active sites but also play an indispensable role in the adsorption and activation of MN and CO, which remarkably promote the formation of the COOCH3 * intermediate and DMC product.

5.
Viruses ; 14(12)2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36560663

RESUMO

African swine fever (ASF) caused by ASF virus (ASFV) is a fatal disease in pigs and results in great economic losses. Due to the lack of available vaccines and treatments, serological diagnosis of ASF plays a key role in the surveillance program, but due to the lack of knowledge and the complexity of the ASFV genome, the candidate target viral proteins are still being researched. False negativity is still a big obstacle during the diagnostic process. In this study, the high antigenic viral proteins p30, p54 and p72 were screened to find the antigenic dominant domains and the tandem His-p30-54-72 was derived. An indirect enzyme-linked immunosorbent assay (iELISA) coated with His-p30-54-72 was developed with a cut-off value of 0.371. A total of 192 clinical samples were detected by His-p30-54-72-coated indirect ELISA (iELISA) and commercial ASFV antibody kits. The results showed that the positive rate of His-p30-54-72-coated iELISA was increased by 4.7% and 14.6% compared with a single viral protein-based commercial ASFV antibody kits. These results provide a platform for future ASFV clinical diagnosis and vaccine immune effect evaluation.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Proteínas Virais/genética , Proteínas Recombinantes , Ensaio de Imunoadsorção Enzimática , Anticorpos Antivirais
6.
Pathogens ; 11(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297257

RESUMO

Tight junctions (TJs) are highly specialized membrane structural domains that hold cells together and form a continuous intercellular barrier in epithelial cells. TJs regulate paracellular permeability and participate in various cellular signaling pathways. As physical barriers, TJs can block viral entry into host cells; however, viruses use a variety of strategies to circumvent this barrier to facilitate their infection. This paper summarizes how viruses evade various barriers during infection by regulating the expression of TJs to facilitate their own entry into the organism causing infection, which will help to develop drugs targeting TJs to contain virus-related disease.

7.
Chem Commun (Camb) ; 58(66): 9290-9293, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35904090

RESUMO

Herein, we develop a low temperature gas template route for in situ growth of highly nitrogen-doped (5.68 wt%), multi-walled carbon nanotubes (N-MWCNTs). The N-MWCNTs exhibit superior sulfur compatibility in hydrogen sulfide (H2S) resource utilization, thus resulting in their enhanced functionality as Li-S cathodes with high sulfur-specific capacity and retention rate.

8.
Vet Microbiol ; 271: 109476, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679815

RESUMO

Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a significant threat to the global pig industry. In this study, a novel recombinant PRRSV, SD043, was isolated from a pig farm experiencing disease in 2019. Phylogenetic analysis revealed that SD043 belonged to lineage 1 of PRRSV-2 while recombination analyses revealed that it is a recombinant virus from lineage 1 and lineage 8 strains. Based on further analysis, SD043 underwent recombination twice. Pathogenicity studies revealed that SD043 causes mild clinical symptoms, thymus atrophy, and severe histopathological lesions in the lungs. Notably, virus shedding in SD043-infected piglets was detectable at 10 days post-inoculation with a high viral load in the respiratory or digestive tract, indicating that the recombinant PRRSV appears to shed higher numbers of virus. Furthermore, genomic surveillance based on all available PRRSVs circulating in Shandong province revealed an increasing increase in recombinant PRRSV since 2015, with the recombinant pattern (between lineages 1 and 8) being the same as that of SD043. These findings enable a better understanding of the process of twice recombination and virus shedding of recombinant PRRSV and can strengthen the prevention and control of the PRRSV epidemic.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , China/epidemiologia , Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Recombinação Genética , Suínos , Virulência , Eliminação de Partículas Virais
9.
Front Microbiol ; 13: 907281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633700

RESUMO

The reverse genetics system is a valuable tool in the virological study of RNA viruses. With the availability of reverse genetics, the porcine reproductive and respiratory syndrome virus (PRRSV) has been utilized as a viral vector for the expression of foreign genes of interest. Here, we constructed a full-length cDNA clone of a highly pathogenic PRRSV (HP-PRRSV) TA-12 strain. Using this cDNA clone, we generated a reporter virus expressing a gaussia luciferase (Gluc) via an additional subgenomic RNA between ORF7 and 3'UTR. This reporter virus exhibited similar growth kinetics to the wild-type (WT) virus and remained genetically stable for at least ten passages in MARC-145 cells. In cells infected with this reporter virus, the correlation between the expression levels of Gluc in culture media and the virus titers suggested that Gluc is a good indicator of the reporter virus infection. With this reporter virus, we further established the Gluc readout-based assays for antiviral drug screening and serum neutralizing antibody detection that exhibited comparable performance to the classical assays. Taken together, we established a reverse genetics system of HP-PRRSV and generated a novel reporter virus that could serve as a valuable tool for antiviral drug screening and serum neutralizing antibody detection.

10.
Biomed Res Int ; 2022: 5833769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528158

RESUMO

Background: Swine influenza A virus (IAV-S) is a common cause of respiratory disease in pigs and poses a major public health threat. However, little attention and funding have been given to such studies. The aim of this study was to assess the prevalence of the Eurasian avian-like H1N1 (EA H1N1), 2009 pandemic H1N1 (pdm/09 H1N1), and H3N2 subtype antibodies in unvaccinated swine populations through serological investigations. Such data are helpful in understanding the prevalence of the IAV-S. Methods: A total of 40,343 serum samples from 17 regions in China were examined using hemagglutination inhibition (HI) tests against EA H1N1, pdm/09 H1N1, and H3N2 IAV-S from 2016 to 2021. The results were analyzed based on a reginal distribution, seasonal distribution, and in different breeding stages. Results: A total of 19,682 serum samples out of the 40,343 were positive for IAV-S (48.79%). The positivity rates to the EA H1N1 subtype, pdm/09 H1N1 subtype, and H3N2 subtype were 24.75% (9,986/40,343), 7.94% (3,205/40,343), and 0.06% (24/40,343), respectively. The occurrences of coinfections from two or more subtypes were also detected. In general, the positivity rates of serum samples were related to the regional distribution and feeding stages. Conclusions: The results of this study showed that the anti-EA H1N1 subtype and pdm/09 H1N1 subtype antibodies were readily detected in swine serum samples. The EA H1N1 subtype has become dominant in the pig population. The occurrences of coinfections from two or more subtypes afforded opportunities for their reassortment to produce new viruses. Our findings emphasized the need for continuous surveillance of influenza viruses.


Assuntos
Coinfecção , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Suínos , Doenças dos Suínos/epidemiologia
11.
Microbiome ; 10(1): 73, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538563

RESUMO

BACKGROUND: The global pork industry is continuously affected by infectious diseases that can result in large-scale mortality, trade restrictions, and major reductions in production. Nevertheless, the cause of many infectious diseases in pigs remains unclear, largely because commonly used diagnostic tools fail to capture the full diversity of potential pathogens and because pathogen co-infection is common. RESULTS: We used a meta-transcriptomic approach to systematically characterize the pathogens in 136 clinical cases representing different disease syndromes in pigs, as well as in 12 non-diseased controls. This enabled us to simultaneously determine the diversity, abundance, genomic information, and detailed epidemiological history of a wide range of potential pathogens. We identified 34 species of RNA viruses, nine species of DNA viruses, seven species of bacteria, and three species of fungi, including two novel divergent members of the genus Pneumocystis. While most of these pathogens were only apparent in diseased animals or were at higher abundance in diseased animals than in healthy animals, others were present in healthy controls, suggesting opportunistic infections. Importantly, most of the cases examined here were characterized by co-infection with more than two species of viral, bacterial, or fungal pathogens, some with highly correlated occurrence and abundance levels. Examination of clinical signs and necropsy results in the context of relevant pathogens revealed that a multiple-pathogen model was better associated with the data than a single-pathogen model was. CONCLUSIONS: Our data demonstrate that most of the pig diseases examined were better explained by the presence of multiple rather than single pathogens and that infection with one pathogen can facilitate infection or increase the prevalence/abundance of another. Consequently, it is generally preferable to consider the cause of a disease based on a panel of co-infecting pathogens rather than on individual infectious agents. Video abstract.


Assuntos
Coinfecção , Doenças Transmissíveis , Vírus de RNA , Animais , Bactérias/genética , Vírus de DNA , Suínos
12.
Inorg Chem ; 61(16): 6083-6093, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35404597

RESUMO

Selective removal of carbonyl sulfide (COS) and hydrogen sulfide (H2S) is the key step for natural gas desulfurization due to the highly toxic and corrosive features of these gaseous sulfides, and efficient and stable desulfurizers are urgently needed in the industry. Herein, we report a class of nitrogen-functionalized, hierarchically lamellar carbon frameworks (N-HLCF-xs), which are obtained from the structural transformation of Zn zeolitic imidazolate frameworks via controllable carbonization. The N-HLCF-xs possess the desirable characteristics of large Brunauer-Emmett-Teller surface areas (645-923 m2/g), combined primary three-dimensional microporosity and secondary two-dimensional lamellar microstructure, and high density of nitrogen base sites with enhanced pyridine ratio (17.52 wt %, 59.91%). The anchored nitrogen base sites in N-HLCF-xs show improved accessibility, which boosts their interaction with acidic COS and H2S. As expected, N-HLCF-xs can be employed as multifunctional and efficient desulfurizers for selective removal of COS and H2S from natural gas. COS was first transformed into H2S via catalytic hydrolysis, and the produced H2S was then captured and separated and catalyzed oxidation into elemental sulfur. The above continuous processes can be achieved with solo N-HLCF-xs, giving extremely high efficiencies and reusability. Their integrated desulfurization performance was better than many desulfurizers used in the area, such as activated carbon, ß zeolite, MIL-101(Fe), K2CO3/γ-Al2O3, and FeOx/TiO2.

13.
ACS Appl Mater Interfaces ; 14(14): 16233-16244, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377591

RESUMO

The preparation of palladium-based catalysts with both high catalytic activity and hydrothermal stability currently appears as a critical topic in methane combustion. Herein, we propose a facile strategy to boost the performance of SnO2-CeO2 binary oxide supported palladium catalysts by tuning the composition of supports. The coexistence of SnO2 and CeO2 phases in an appropriate ratio is favorable for the formation of both PdxCe1-xO2-δ and PdxSn1-xO2-δ solid solutions due to the reduced crystallite size. This unique microstructure could enhance the metal-support interaction to stabilize the active PdO phase and promote its reoxidation, meanwhile generating more oxygen vacancies to improve the reducibility of PdO. On account of the facilitated conversion of PdO ↔ Pd, coupled with the low-temperature dissociation of methane promoted by abundant active oxygen species, the Pd/5Sn5Ce catalyst exhibits a superior catalytic activity with a T99 of ca. 360 °C, a robust stability under both dry and wet conditions, and an excellent thermal stability during heating-cooling light-off tests.

14.
J Colloid Interface Sci ; 619: 116-122, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35378473

RESUMO

Micelles with well-defined nanostructures were generally formed in the presence of a suitable solvent. We report herein the accelerated construction of micelles with ordered nanostructures without assistance of additional solvents. The micelles were employed for ultrafast fabrication of ordered mesoporous silicas (OMS) using tetramethyl orthosilicate (TMOS) as silica source. When γ-aminopropyl triethoxysilane precursor was introduced, we obtained amine group (-NH2) decorated ordered mesoporous silicas (OMS-NH2-x, where x stands for the molar ratio of γ-aminopropyl triethoxysilane to TMOS). The resulted materials are large in BET surface area and tunable in content of -NH2 site, which are highly efficient for catalytic elimination of gaseous carbonyl sulfide and hydrogen sulfide. Using this strategy, other functionalized groups such as thiol and benzene can be also introduced into OMS. Furthermore, the introducing of phenolic precursor into the system leads to multiphase co-assembly for the formation of ordered mesoporous silica-polymer nanocomposites. It is demonstrated that the solvent-free ultrafast assembly offers a sustainable route for preparation of ordered mesoporous functional materials.

15.
Small ; 17(46): e2104939, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34668315

RESUMO

Efficient catalytic elimination of hydrogen sulfide (H2 S) with high activity and durability in nature gas and blast-furnace gas is very critical for both fundamental catalytic research and applied environmental chemistry. Herein, atomically dispersed Co atom catalysts with Co-N4 sites that can transform H2 S into S with conversion rate of ≈100% are designed and prepared. The representative 4Co-N/NC achieves a sulfur yield of nearly 100% and TOF(Co) of 869 h-1 at 180 °C. Importantly, remarkable long-term durability is achieved as well, with no obvious loss of catalytic activity in the run of 460 h, outperforming most of the reported catalysts. The short bond length and strong cooperation of Co-N are beneficial to improve the structural stability of the Co-N4 centers, and significantly enhanced resistance of water and sulfation over single-atom Co-catalyst. The present mechanism involves the stepwise hydrogen transfer process via the adsorbed *HOO and *HS intermediates.

16.
J Opt Soc Am A Opt Image Sci Vis ; 38(8): 1232-1236, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613318

RESUMO

Here, we investigate the photonic spin Hall effect in twisted bilayer graphene. The optical conductivities for several rotation angles of twisted bilayer graphene are calculated by first principles, based on which a theoretical framework is established to describe the light-matter interaction. To enhance the photonic spin Hall effect, twisted bilayer graphene is placed on a BK7 glass substrate and a Gaussian beam is launched near the Brewster angle. The spin splitting as well as Goos-Hänchen shifts are investigated, which are associated, respectively, with the imaginary and real parts of the surface conductivities of the twisted bilayer graphene. These findings provide a deeper understanding of the photonic spin Hall effect in two-dimensional materials and have potential application in characterizing bilayer graphene.

17.
Virology ; 561: 28-35, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139638

RESUMO

Reassortant Eurasian avian-like (EA) H1N1 virus, possessing 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes, namely G4 genotype, has replaced the G1 genotype EA H1N1 virus (all the genes were of EA origin) and become predominant in swine populations in China. Understanding the pathogenicity of G4 viruses in pigs is of great importance for disease control. Here, we conducted comprehensive analyses of replication and pathogenicity of G4 and G1 EA H1N1 viruses in pigs. G4 virus exhibited enhanced replication, increased duration of virus shedding, and caused more severe respiratory lesions in pigs compared with G1 virus. G4 virus, with viral ribonucleoprotein (vRNP) complex genes of pdm/09 origin, exhibited higher levels of nuclear accumulation and higher polymerase activity, which is essential for improved replication of G4 virus. These findings indicate that G4 virus poses a great threat to both swine industry and public health, and control measures should be urgently implemented.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/patogenicidade , Doenças dos Suínos/virologia , Animais , Núcleo Celular/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/patologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/fisiologia , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Suínos , Doenças dos Suínos/patologia , Traqueia/patologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Replicação Viral , Eliminação de Partículas Virais
18.
Opt Express ; 29(10): 15631-15640, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985260

RESUMO

An all-fiber integrated photodetector is proposed and demonstrated by assembling a graphene/palladium diselenide (PdSe2) Van der Waals heterostructure onto the endface of a standard optical fiber. A gold film is covered on the heterostructure working as an electrode and a mirror, which reflects back the unabsorbed residual light for further reusage. Owing to the low bandgap of PdSe2, the all-fiber photodetector shows a broadband photoresponse from 650 to 1550 nm with a high photoresponsivity of 6.68×104 AW-1, enabling a low light detection of 42.5 pW. And the fastest temporal response is about 660 µs. Taking advantage of heterostructures, the photodetector can work in self-powered mode with the on/off ratio about 82. These findings provide new strategies for integrating two-dimensional materials into optical fibers to realize integrated all-fiber devices with multi-function applications.

19.
J Cell Mol Med ; 25(9): 4173-4182, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33793048

RESUMO

14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3-binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.


Assuntos
Proteínas 14-3-3/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Transdução de Sinais , Viroses/imunologia , Vírus/imunologia , Proteínas 14-3-3/imunologia , Animais , Humanos , Viroses/metabolismo , Viroses/virologia
20.
J Hazard Mater ; 411: 125180, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858115

RESUMO

In the present work, we report a facile oxalate-derived hydrothermal method to fabricate α-, ß- and δ-MnO2 catalysts with hierarchically porous structure and study the phase-dependent behavior for selective oxidation of H2S over MnO2 catalysts. It was disclosed that the oxygen vacancy, reducibility and acid property of MnO2 are essentially determined by the crystalline phase. Systematic experiments demonstrate that δ-MnO2 is superior in active oxygen species, activation energy and H2S adsorption capacity among the prepared catalysts. As a consequence, δ-MnO2 nanosphere with a hierarchically porous structure shows high activity and stability with almost 100% H2S conversion and sulfur selectivity at 210 °C, better than majority of reported Mn-based materials. Meanwhile, hierarchically porous structure of δ-MnO2 nanosphere alleviates the generation of by-product SO2 and sulfate, promoting the adoptability of Mn-based catalysts in industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...