Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7476, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978295

RESUMO

As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.


Assuntos
Caenorhabditis elegans , Fatores de Diferenciação de Crescimento , Adulto , Camundongos , Humanos , Animais , Caenorhabditis elegans/metabolismo , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Envelhecimento/genética , Encéfalo/metabolismo , Neurônios/metabolismo , Proteínas Morfogenéticas Ósseas
3.
Eur J Pharmacol ; 901: 174077, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798601

RESUMO

This study investigated the hemodynamic effect of Bay 60-7550, a phosphodiesterase type 2 (PDE2) inhibitor, in healthy rat hearts both in vivo and ex vivo and its underlying mechanisms. In vivo rat left ventricular pressure-volume loop, Langendorff isolated rat heart, Ca2+ transient of left ventricular myocyte and Western blot experiments were used in this study. The results demonstrated that Bay 60-7550 (1.5 mg/kg, i. p.) increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-diastolic volume, heart rate, and ejection fraction. The simultaneous aortic pressure recording indicated that the systolic blood pressure was increased and diastolic blood pressure was decreased by Bay 60-7550. Also, the arterial elastance which is proportional to the peripheral vessel resistance was significantly decreased. Bay 60-7550 (0.001, 0.01, 0.1, 1 µmol/l) also enhanced the left ventricular development pressure in non-paced and paced modes with a decrease of heart rate in non-paced model. Bay 60-7550 (1 µmol/l) increased SERCA2a activity and SR Ca2+ content and reduced SR Ca2+ leak rate. Furthermore, Bay 60-7550 (0.1 µmol/l) increased the phosphorylation of phospholamban at 16-serine without significantly changing the phosphorylation levels of phospholamban at 17-threonine and RyR2. Bay 60-7550 increased the rat heart contractility and reduced peripheral arterial resistance may be mediated by increasing the phosphorylation of phospholamban and dilating peripheral vessels. PDE2 inhibitors which result in a positive inotropic effect and a decrease in peripheral resistance might serve as a target for developing agents for the treatment of heart failure in clinical settings.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cardiotônicos/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Imidazóis/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Triazinas/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Hemodinâmica/efeitos dos fármacos , Técnicas In Vitro , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Resistência Vascular/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
4.
Sheng Li Xue Bao ; 73(2): 275-285, 2021 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-33903889

RESUMO

This study aimed to explore the positive inotropic effect of phosphodiesterase type 9 (PDE9) inhibitor PF-04449613 in ratsand its cellular and molecular mechanisms. The heart pressure-volume loop (P-V loop) analysis was used to detect the effects of PF-04449613 on rat left ventricular pressure-volume relationship, aortic pressures and peripheral vessel resistance in healthy rats. The Langendorff perfusion of isolated rat heart was used to explore the effects of PF-04449613 on heart contractility. The cardiomyocyte sarcoplasmic reticulum (SR) Ca2+ transients induced by field stimulation and caffeine were used to analyze the mechanism underlying the effect of PF-04449613 using Fluo-4 AM as a Ca2+ indicator. The results indicated as follows: (1) PF-04449613 (5.5 mg/kg, ip) significantly increased the stroke work, cardiac output, stroke volume, end-systolic pressure and ejection fraction (P < 0.05), and decreased the end-systolic volume, end-diastolic volume and end-diastolic pressure (P < 0.05). Meanwhile, the systolic blood pressure was increased and diastolic blood pressure and arterial elastance were decreased after PF-04449613 treatment (P < 0.05). (2) PF-04449613 (0.001, 0.01, 0.1, 1 µmol/L) significantly increased the left ventricular developed pressure (LVDP) in a concentration-dependent manner in vitro (P < 0.05). (3) PF-04449613 (5 µmol/L) significantly increased the amplitude of SR Ca2+ transients mediated by facilitating sarcoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) (P < 0.05). (4) PF-04449613 (5 µmol/L) decreased the SR Ca2+ leak rate via ryanodine receptor 2 (RyR2) (P < 0.05). In conclusion, PF-04449613 exerted positive inotropic effect both in vivo and in vitro by enhancing SERCA2a activity.


Assuntos
Cálcio , Inibidores de Fosfodiesterase , Animais , Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático
5.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(5): 408-413, 2020 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-33629552

RESUMO

Objective: To explore the positive inotropic effect of atractylodin which is major active component of Rhzoma Atractylodis Lanceae and its underlying mechanism. Methods: For in vivo study, six male SD rats were randomly selected for the heart pressure-volume loop (P-V loop) experiment. The effects of atractylodin (3 mg/kg, intraperitoneal injection) on hemodynamic parameters such as LVDP (left ventricular developed pressure), SW (stroke work), HR (heart rate), CO (cardiac output), SBP (systolic blood pressure) and DBP (diastolic blood pressure) were analyzed. For in vitro study, left ventricular developed pressure (LVDP) from the Langendroff-perfused isolated rat heart was analyzed before as the control and after atractylodin perfusion. For in vitro study, the effects of atractylodin and atractylodin with H89 (PKA inhibitor) or KN-93 (CaMKII inhibitor or Calyculin A (PP1, PP2A inhibitor) on LVDP were analyzed. The experiments were separated into four parts with six isolated hearts for each as follows: (1) Control→0.1→1→10 µmol/L atractylodin; (2) Control→200 nmol/L H89 (PKA inhibitor)→200 nmol/L H89+10 µmol/L atractylodin; (3) Control→500 nmol/L KN-93 (CaMKII inhibitor)→500 nmol/L KN-93+10 µmol/L atractylodin; (4) Control→10 nmol/L Calyculin A (PP1, PP2A inhibitor)→10 nmol/L Calyculin A+10 µmol/L atractylodin. For the study of rat left ventricular myocyte Ca2+ transient induced by field stimulation, the experiment design was the same as in vitro study. The six cells from the different rats were used for each part experiment. Results: ① Atractylodin (3 mg/kg) significantly increased the heart rate, cardiac output and stroke work (P<0.05) and decreased the diastolic blood pressure (P<0.05). ② Atractylodin (0.1, 1, 10 µmol/L) significantly increased the LVDP in a concentration dependent manner (P<0.05). The positive inotropic effect of atractylodin could be blocked by PKA inhibitor H89. ③ Atractylodin (10 µmol/L) significantly increased the amplitude of SR Ca2+ transient amplitude mediated by facilitating sarcoplasmic reticulum SERCA2a. The enhanced amplitude of SR Ca2+ transient could be blocked by PKA inhibitor H89. Conclusion: Atractylodin had positive inotropic effect in rat heart both in vivo and in vitro with decreased diastolic blood pressure and its underlying mechanism was mediated by PKA. Based on the fact that the atractylodin exerted its positive inotropic effect was mediated by PKA, the PKA-SERCA2a signaling pathway might be the mechanism of the atractylodin's positive inotropy.


Assuntos
Furanos , Miócitos Cardíacos , Animais , Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Furanos/farmacologia , Masculino , Contração Miocárdica , Ratos , Ratos Sprague-Dawley
6.
Biomed Res Int ; 2019: 9783106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31183380

RESUMO

PURPOSE: To evaluate the diagnostic performance of deep learning with a multichannel fusion three-dimensional convolutional neural network (MCF-3DCNN) in the differentiation of the pathologic grades of hepatocellular carcinoma (HCC) based on dynamic contrast-enhanced magnetic resonance images (DCE-MR images). METHODS AND MATERIALS: Fifty-one histologically proven HCCs from 42 consecutive patients from January 2015 to September 2017 were included in this retrospective study. Pathologic examinations revealed nine well-differentiated (WD), 35 moderately differentiated (MD), and seven poorly differentiated (PD) HCCs. DCE-MR images with five phases were collected using a 3.0 Tesla MR scanner. The 4D-tensor representation was employed to organize the collected data in one temporal and three spatial dimensions by referring to the phases and 3D scanning slices of the DCE-MR images. A deep learning diagnosis model with MCF-3DCNN was proposed, and the structure of MCF-3DCNN was determined to approximate clinical diagnosis experience by taking into account the significance of the spatial and temporal information from DCE-MR images. Then, MCF-3DCNN was trained based on well-labeled samples of HCC lesions from real patient cases by experienced radiologists. The accuracy when differentiating the pathologic grades of HCC was calculated, and the performance of MCF-3DCNN in lesion diagnosis was assessed. Additionally, the areas under the receiver operating characteristic curves (AUC) for distinguishing WD, MD, and PD HCCs were calculated. RESULTS: MCF-3DCNN achieved an average accuracy of 0.7396±0.0104 with regard to totally differentiating the pathologic grade of HCC. MCF-3DCNN also achieved the highest diagnostic performance for discriminating WD HCCs from others, with an average AUC, accuracy, sensitivity, and specificity of 0.96, 91.00%, 96.88%, and 89.62%, respectively. CONCLUSIONS: This study indicates that MCF-3DCNN can be a promising technology for evaluating the pathologic grade of HCC based on DCE-MR images.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Fígado/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/métodos , Meios de Contraste/administração & dosagem , Feminino , Gadolínio DTPA/administração & dosagem , Humanos , Fígado/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/administração & dosagem , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...