Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sci Rep ; 14(1): 11520, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769456

RESUMO

Therapeutic drug monitoring (TDM) is a crucial clinical practice that improves pharmacological effectiveness and prevent severe drug-related adverse events. Timely reporting and intervention of critical values during TDM are essential for patient safety. In this study, we retrospectively analyzed the laboratory data to provide an overview of the incidence, distribution pattern and biochemical correlates of critical values during TDM. A total of 19,110 samples were tested for nine drug concentrations between January 1, 2019, and December 31, 2020. Of these, 241 critical values were identified in 165 patients. The most common critical values were vancomycin trough (63.4%), followed by tacrolimus trough (16.9%) and digoxin (15.2%). The primary sources of drug critical values were the department of general intensive care unit (ICU), cardiology, and surgery ICU. At baseline or the time of critical value, significant differences were found between the vancomycin, digoxin, and tacrolimus groups in terms of blood urea nitrogen (BUN), creatinine, N-terminal Pro-B-Type Natriuretic Peptide (NT-proBNP), and lymphocyte percentage, P < 0.05. Therefore, it is important to prioritize and closely monitor drug concentrations to reduce laboratory critical values during TDM.


Assuntos
Digoxina , Monitoramento de Medicamentos , Tacrolimo , Vancomicina , Humanos , Monitoramento de Medicamentos/métodos , Estudos Retrospectivos , Masculino , Feminino , Tacrolimo/uso terapêutico , Tacrolimo/sangue , Vancomicina/sangue , Vancomicina/uso terapêutico , Vancomicina/farmacocinética , Pessoa de Meia-Idade , Idoso , Digoxina/sangue , Digoxina/uso terapêutico , Unidades de Terapia Intensiva , Adulto , Creatinina/sangue , Nitrogênio da Ureia Sanguínea , Peptídeo Natriurético Encefálico/sangue
2.
Int J Med Sci ; 21(5): 795-808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616999

RESUMO

Background: Inducible co-stimulator (ICOS) shows great potential in the regulation of innate and adaptive immunity. However, previous studies of ICOS have often been limited to one or two levels. Methods: Using the data from the online database, the immunohistochemistry, and enzyme-linked immunosorbent assays, we investigated the role of ICOS / PD-L1 on patients with NSCLC at the mRNA, protein, and serum levels. Results: Our data revealed that unlike most solid tumors, the mRNA expression of ICOS was down-regulated in NSCLC. In addition, our data also showed that mRNA expression levels in ICOS are negatively associated with poor clinicopathologic grading but positively associated with better prognostic outcomes and higher Tregs infiltration level. Immunohistochemistry showed that ICOS correlated negatively with the T stage; while PD-L1 levels correlated positively with the N stage and FOXP3 levels. Serological biomarker analysis showed that patients with NSCLC had lower sICOS levels, which increased significantly post-surgery, and combined sICOS and sPD-L1 diagnosis improved efficacy and accuracy of disease diagnosis. Conclusion: Our findings support that ICOS suggests lower pathological staging and better prognosis. ICOS is a potential diagnostic and prognostic biomarker for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Prognóstico , Multiômica , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , RNA Mensageiro/genética , Biomarcadores , Proteína Coestimuladora de Linfócitos T Induzíveis/genética
3.
Poult Sci ; 103(5): 103652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537405

RESUMO

Mycoplasma gallisepticum (MG) is a highly contagious avian respiratory pathogen characterized by rapid spread, widespread distribution, and long-term persistence of infection. Previous studies have shown that chicken macrophage HD11 cells play a critical role in the replication and immunomodulation of MG. Macrophages are multifunctional immunomodulatory cells that polarize into different functions and morphologies in response to exogenous stimuli. However, the effect of MG infection on HD11 polarization is not well understood. In this study, we observed a time-dependent increase in both the expression of the MG-related virulence protein pMGA1.2 and the copy number of MG upon MG infection. Polarization studies revealed an upregulation of M1-type marker genes in MG-infected HD11 cells, suggesting that MG mainly induces HD11 macrophages towards M1-type polarization. Furthermore, MG activated the inflammatory vesicle NLRP3 signaling pathway, and NLRP3 inhibitors affected the expression of M1 and M2 marker genes, indicating the crucial regulatory role of the NLRP3 signaling pathway in MG-induced polarization of HD11 macrophages. Our findings reveal a novel mechanism of MG infection, namely the polarization of MG-infected HD11 macrophages. This discovery suggests that altering the macrophage phenotype to inhibit MG infection may be an effective control strategy. These findings provide new perspectives on the pathogenic mechanism and control measures of MG.


Assuntos
Galinhas , Macrófagos , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Mycoplasma gallisepticum/fisiologia , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/imunologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Linhagem Celular
4.
Mol Biol Rep ; 51(1): 70, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175288

RESUMO

BACKGROUND: The tea tree (Melaleuca alternifolia) is renowned for its production of tea tree oil, an essential oil primarily composed of terpenes extracted from its shoot. MYB transcription factors, which are one of the largest TF families, play a crucial role in regulating primary and secondary metabolite synthesis. However, knowledge of the MYB gene family in M. alternifolia is limited. METHODS AND RESULTS: Here, we conducted a comprehensive genome-wide analysis of MYB genes in M. alternifolia, referred to as MaMYBs, including phylogenetic relationships, structures, promoter regions, and GO annotations. Our findings classified 219 MaMYBs into four subfamilies: one 5R-MYB, four 3R-MYBs, sixty-one MYB-related, and the remaining 153 are all 2R-MYBs. Seven genes (MYB189, MYB146, MYB44, MYB29, MYB175, MYB162, and MYB160) were linked to terpenoid synthesis based on GO annotation. Phylogenetic analysis with Arabidopsis homologous MYB genes suggested that MYB193 and MYB163 may also be involved in terpenoid synthesis. Additionally, through correlation analysis of gene expression and metabolite content, we identified 42 MYB genes associated with metabolite content. CONCLUSION: The results provide valuable insights into the importance of MYB transcription factors in essential oil production in M. alternifolia. These findings lay the groundwork for a better understanding of the MYB regulatory network and the development of novel strategies to enhance essential oil synthesis in M. alternifolia.


Assuntos
Arabidopsis , Melaleuca , Óleos Voláteis , Genes myb , Melaleuca/genética , Filogenia , Chás Medicinais , Fatores de Transcrição/genética , Terpenos
5.
Oncol Lett ; 26(4): 458, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37736555

RESUMO

S100 calcium-binding protein A6 (S100A6) is a protein that belongs to the S100 family. The present study aimed to investigate the function of S100A6 in the diagnosis and survival prediction of glioma and elucidated the potential processes affecting glioma development. The Cancer Genome Atlas database was searched to identify the relationship among S100A6 expression, immune cell infiltration, clinicopathological parameters and glioma prognosis. Several clinical cases were used to verify these findings. S100A6 gene expression was high in glioma tissues, suggesting its diagnostic significance. In particular, S100A6 upregulation in glioma tissues exhibited a significant and positive correlation with the World Health Organization (WHO) grade, histological type, age, sex, primary treatment outcomes, 1p/19q codeletion, isocitrate dehydrogenase (IDH) status, overall survival (OS), progression-free interval and disease-specific survival. Kaplan-Meier and Cox regression analyses revealed that S100A6 gene expression can independently function as a risk factor affecting the prognosis of patients with glioma. Furthermore, Gene Ontology functional enrichment analysis revealed that S100A6 is implicated in immune responses and that the expression profiles of S100A6 are linked to the immune microenvironment. Furthermore, immunohistochemistry revealed that increased S100A6 protein levels are correlated with age, 1p/19q codeletion, IDH status, WHO grade and OS. The present findings suggest that increased S100A6 expression is an indicator of the dismal prognosis of patients with glioma and that it can be used as a potential diagnostic biomarker for this condition.

6.
Int Immunopharmacol ; 124(Pt B): 110946, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717315

RESUMO

Mycoplasma gallisepticum (MG) is a major pathogen causing chronic respiratory disease (CRD) in chickens. Exposure to MG poses a constant threat to chicken health and causes substantial economic losses. Antibiotics are the main treatment for MG infections, but have to struggle with antibiotic residues and MG resistance. To date, no safe and more effective prevention or treatment for MG infections has been identified. Luteolin (Lut) is a natural flavonoid compound known for its excellent anti-viral, anti-bacterial, immunoregulatory, and anti-inflammatory pharmacological activities. Herein, we established an MG-infected model using partridge shank chickens and chicken-like macrophages (HD11 cells) to investigate the effect and potential mechanism of Lut against MG-induced immune damage. According to our findings, Lut significantly inhibited the expression of MG adhesion protein (pMGA1.2) in vivo and in vitro. Lut effectively mitigated the MG-induced decrease in body weight gain, feed conversion ratio, survival rate, and serum IgG and IgA levels. Lut directly repaired MG-induced spleen and thymus damage by histopathological analysis. Furthermore, network pharmacology analysis revealed that Lut most probably resisted MG infection through the IL-17/NF-kB pathway. In vivo and in vitro experiments, Lut significantly suppressed the increase in key protein IL-17A, TRAF6, p-p65, and p-IkBα in the IL-17/NF-kB pathway. Meanwhile, Lut markedly alleviated MG-induced the increase of pro-inflammatory cytokines TNF-α, IL-6, IL-1ß, pro-apoptotic genes caspase3 and caspase9, while promoting the expression of anti-apoptotic genes Bcl-2 and Bcl-XL. In summary, Lut effectively suppressed MG colonization, alleviated MG-induced the production performance degradation, inflammatory responses, and immune damage by inhibiting the IL-17/ NF-kB pathway. This study indicates Lut can serve as a safe and effective antibiotic alternative drug for preventing and treating MG-induced CRD. It also provides new evidence to explore the molecular mechanisms of MG infection.


Assuntos
Mycoplasma gallisepticum , NF-kappa B , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Luteolina/farmacologia , Luteolina/uso terapêutico , Mycoplasma gallisepticum/fisiologia , Interleucina-17/farmacologia , Galinhas , Antibacterianos/farmacologia
7.
Opt Express ; 31(16): 26685-26696, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710523

RESUMO

The metalens has vast applications in biomedicine and industrial manufacturing due to their ultrathin structure and vital ability to manipulate the properties of light waves for long-infrared systems. However, it is difficult for metalens to achieve the confocal function with high focusing efficiency, wide wavelength bandwidth, and low structural complexity. Here, we propose and experimentally demonstrate an all-silicon dielectric metalens composed of arrays of minimalist meta-atoms with a single rectangular nanopillar arranged on a periodic square lattice substrate, which realizes the confocal function of the orthogonal-linear-polarized light with wavelengths of 10.6 µm and 9.3 µm, with focusing efficiencies of 64.94% and 60.03%, respectively. Also, it reveals nearly the diffraction-limited focusing performance. In addition, the metalens can realize precise long-infrared thermal imaging. Moreover, the proposed metalens is compatible with the standard complementary metal oxide semiconductor processes, which can effectively reduce the manufacturing cost and provide a feasible solution for developing planar integrated multifunctional micro-nanophotonic devices in the long-infrared field.

8.
Langmuir ; 39(18): 6613-6622, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37098239

RESUMO

Development of high-performance materials for the capture and separation of CO2 from the gas mixture is significant to alleviate carbon emission and mitigate the greenhouse effect. In this work, a novel structure of C9N7 slit was developed to explore its CO2 adsorption capacity and selectivity using Grand Canonical Monte Carlo (GCMC) and Density Functional Theory (DFT) calculations. Among varying slit widths, C9N7 with the slit width of 0.7 nm exhibited remarkable CO2 uptake with superior CO2/N2 and CO2/CH4 selectivity. At 1 bar and 298 K, a maximum CO2 adsorption capacity can be obtained as high as 7.06 mmol/g, and the selectivity of CO2/N2 and CO2/CH4 was 41.43 and 18.67, respectively. In the presence of H2O, the CO2 uptake of C9N7 slit decreased slightly as the water content increased, showing better water tolerance. Furthermore, the underlying mechanism of highly selective CO2 adsorption and separation on the C9N7 surface was revealed. The closer the adsorption distance, the stronger the interaction energy between the gas molecule and the C9N7 surface. The strong interaction between the C9N7 nanosheet and the CO2 molecule contributes to its impressive CO2 uptake and selectivity performance, suggesting that the C9N7 slit could be a promising candidate for CO2 capture and separation.

9.
Opt Express ; 31(5): 8110-8119, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859927

RESUMO

In this work, a simple dielectric metasurface hologram is proposed and designed by combining the electromagnetic vector analysis method and the immune algorithm, which can realize the holographic display of dual wavelength orthogonal-linear polarization light in visible light band, solve the problem of low efficiency of the traditional design method of metasurface hologram, and effectively improve the diffraction efficiency of metasurface hologram. The titanium dioxide metasurface nanorod based on rectangular structure is optimized and designed. When the x-linear polarized light with wavelength of 532 nm and y-linear polarized light with wavelength of 633 nm are incident on the metasurface respectively, different display output images with low cross-talk can be obtained on the same observation plane, and the transmission efficiencies of x-linear and y-linear polarized light are as high as 68.2% and 74.6% respectively in simulation. Then the metasurface is fabricated by Atomic Layer Deposition method. The experimental results are consistent with the design results, which proves that the metasurface hologram designed by this method can completely realize the feasibility of wavelength and polarization multiplexing holographic display, and has potential application value in holographic display, optical encryption, anti-counterfeiting, data storage and other fields.

10.
Mol Biol Rep ; 50(2): 1545-1552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513867

RESUMO

BACKGROUND: Melaleuca alternifolia is a commercially important medicinal tea tree native to Australia. Tea tree oil, the essential oil distilled from its branches and leaves, has broad-spectrum germicidal activity and is highly valued in the pharmaceutical and cosmetic industries. Thus, the study of genome, which can provide reference for the investigation of genes involved in terpinen-4-ol biosynthesis, is quite crucial for improving the productivity of Tea tree oil. METHODS AND RESULTS: In our study, the next-generation sequencing was used to investigate the whole genome of Melaleuca alternifolia. About 114 Gb high quality sequence data were obtained and assembled into 1,838,159 scafolds with an N50 length of 1021 bp. The assembled genome size is about 595 Mb, twice of that predicted by flow cytometer (300 Mb) and k-mer analysis (345 Mb). Benchmarking Universal Single-Copy Orthologs analyses indicated that only 11.3% of the conserved single-copy genes were miss. Repetitive regions cover over 40.43% of the genome. A total of 44,369 protein-coding genes were predicted and annotated against Nr, Swissprot, Refseq, COG, KOG, and KEGG database. Among these genes, 32,909 and 16,241 genes were functionally annotated in Nr and KEGG, respectively. Moreover, 29,411 and 14,435 genes were functionally annotated in COG and KOG. Additionally, 457,661 simple sequence repeats and 1109 transcription factors (TFs) form 67 TF families were identified in the assembled genome. CONCLUSION: Our findings provide a draft genome sequencing of M. alternifolia which can act as a reference for the deep sequencing strategies, and are useful for future functional and comparative genomics analyses.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Humanos , Melaleuca/genética , Árvores , Chás Medicinais
11.
BMC Plant Biol ; 22(1): 558, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460945

RESUMO

BACKGROUND: Somatic embryogenesis (SE) was recognized as an important tool for plants to propagate. However, our knowledge about the proteins involved in early SE including the callus dedifferentiation is still limited, especially in the economic woody tree - Eucalyptus. RESULTS: We used the data-independent acquisition mass-spectrometry to study the different proteome profiles of early SE of two Eucalyptus species-E. camaldulensis (high regeneratively potential) and E. grandis x urophylla (low regenerative potential). Initially, 35,207 peptides and 7,077 proteins were identified in the stem and tissue-culture induced callus of the two Eucalyptus species. MSstat identified 2,078 and 2,807 differentially expressed proteins (DEPs) in early SE of E. camaldulensis and E. grandis x urophylla, respectively. They shared 760 upregulated and 420 downregulated proteins, including 4 transcription factors, 31 ribosomal proteins, 1 histone, 3 zinc finger proteins (ZFPs), 16 glutathione transferases, 10 glucosyltransferases, ARF19, WOX8 and PIN1. These proteins might be involved in the early SE of Eucalyptus. By combining the miRNA and RNA-Seq results, some miRNA ~ gene/protein regulatory networks were identified in early SE of Eucalyptus, such as miR160 ~ TPP2, miR164 ~ UXS2, miR169 ~ COX11 and miR535 ~ Eucgr.E01067. Further, we found SERK, WRKY, ZFP and ABC transporter might be related with high SE potential. CONCLUSIONS: Overall, our study identified proteins involved in the early SE and related to the high regeneration potential of Eucalyptus. It greatly enhanced our understanding of the early SE and the SE capacity of Eucalyptus.


Assuntos
Eucalyptus , MicroRNAs , Eucalyptus/genética , Proteoma/genética , Madeira , Desenvolvimento Embrionário
12.
Int Immunopharmacol ; 113(Pt A): 109419, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461587

RESUMO

Mycoplasma gallisepticum (MG) is a pathogenic microorganism that causes chronic respiratory disease (CRD). MG infection has a serious negative impact on the poultry industry. Andrographolide (AG) is known to regulate immune responses, antimicrobial infections, and anti-inflammatory responses. However, the underlying molecular mechanisms of AG action in MG-infected chickens remain unclear. Hence, we constructed models of MG infection by using chickens and chicken macrophage-like (HD11) cells in vivo and in vitro, respectively. The results showed that AG significantly inhibited the mRNA and protein expression of the toxic adhesion protein pMGA1.2 in vivo and in vitro. Meanwhile, AG treatment significantly decreased the mRNA expression of pro-inflammatory such as interleukin-6 (IL-6) and interleukin- 1ß (IL-1ß), and increased the mRNA expression of an anti-inflammatory such as interleukin-10 (IL-10) and transforming growth factor beta (TGF-ß) in vivo and in vitro. Furthermore, AG treatment down-regulated inflammasome NLRP3 and apoptosis genes caspase3 and caspase9, and up-regulated autophagy protein light chain 3 (LC3) by regulating the PI3K/Akt signaling pathway in vitro. Our results suggest that AG can reduce the expression of NLRP3 and alleviate the inflammatory response from MG infection by inducing autophagy, probably by modulating PI3K/Akt signaling pathway. This study demonstrates that AG can be used as a specific target to prevent and treat MG infection effectively.


Assuntos
Mycoplasma gallisepticum , Infecções Respiratórias , Animais , Galinhas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína 3 que Contém Domínio de Pirina da Família NLR
13.
Mitochondrial DNA B Resour ; 7(10): 1870-1872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325279

RESUMO

Carallia diplopetala (Rhizophoraceae) is an important economic tree species narrowly distributed endemic to East Asia. In this study, We generate the complete chloroplast genome of C. diplopetala using next-generation sequencing technology, which is 162,052 bp in size and consists of a large single copy (LSC) of 89,556 bp and a small single copy (SSC) of 18,814 bp, separated a pair of inverted repeats (IRb and IRa) of 26,841 bp. The overall GC content is 36.4%. A total of 130 genes are annotated, including 83 protein-coding genes, 37 tRNAs, eight rRNAs and two pseudogenes (ψycf1 and ψrps19). The phylogenetic analysis indicated that C. diplopetala and C. brachiate formed a monophyletic clade with strong support and then sister to Pellacalyx yunnanensis. The plastome of C. diplopetala will provide informative genomic resources for further conservation applications.

14.
Exp Ther Med ; 24(1): 447, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35720627

RESUMO

Sepsis is a dangerous disease that develops rapidly and has a high mortality rate. A timely and accurate assessment of the patient's condition is beneficial in improving prognosis and reducing mortality. Therefore, the present study was designed to investigate the potential association between quick sequential organ failure assessment (qSOFA) scores and biochemical indicators, such as conjugated bilirubin (CB) and creatinine levels, with the 28-day prognosis of patients with sepsis in a retrospective observational study. All cases were divided into survival and non-survival groups on the 28th day after diagnosis. The qSOFA scores, and CB and creatinine levels were significantly higher in the non-survival group than in the survival group (both P<0.01). Cox regression models identified CB [hazard ratio (HR), 1.006; P=0.002] and creatinine levels (HR, 1.002; P=0.024) as independent factors affecting 28-day mortality. The area under the curve (AUC) for CB and creatinine levels plus qSOFA score was 0.792 (95% confidence interval, 0.745-0.834), which was larger than the values for CB level, creatinine level and qSOFA score alone (all P<0.01) in the prognosis of 28-day mortality. The cut-off value of CB and creatinine levels plus qSOFA score for the 28-day mortality was 0.275 (-2.466 + 0.012 x CB + 0.002 x creatinine + 1.289 x qSOFA). Patients with lower combined predictor values had a better prognosis as demonstrated by Kaplan-Meier survival curves (log-rank test, 10.060; P=0.002). In both the septic shock and sepsis groups, the combined predictor value was higher in the non-survival group than in the survival group (P<0.001). Therefore, an increase in the combined predictor value of CB and creatinine levels plus qSOFA score may be an important predictor of disease progression and prognosis in patients with sepsis and septic shock.

15.
BMC Plant Biol ; 22(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979920

RESUMO

BACKGROUND: Eucalyptus is a highly diverse genus of the Myrtaceae family and widely planted in the world for timber and pulp production. Tissue culture induced callus has become a common tool for Eucalyptus breeding, however, our knowledge about the genes related to the callus maturation and shoot regeneration is still poor. RESULTS: We set up an experiment to monitor the callus induction and callus development of two Eucalyptus species - E. camaldulensis (high embryogenic potential) and E. grandis x urophylla (low embryogenic potential). Then, we performed transcriptome sequencing for primary callus, mature callus, shoot regeneration stage callus and senescence callus. We identified 707 upregulated and 694 downregulated genes during the maturation process of the two Eucalyptus species and most of them were involved in the signaling pathways like plant hormone and MAPK. Next, we identified 135 and 142 genes that might play important roles during the callus development of E. camaldulensis and E. grandis x urophylla, respectively. Further, we found 15 DEGs shared by these two Eucalyptus species during the callus development, including Eucgr.D00640 (stem-specific protein TSJT1), Eucgr.B00171 (BTB/POZ and TAZ domain-containing protein 1), Eucgr.C00948 (zinc finger CCCH domain-containing protein 20), Eucgr.K01667 (stomatal closure-related actinbinding protein 3), Eucgr.C00663 (glutaredoxin-C10) and Eucgr.C00419 (UPF0481 protein At3g47200). Interestingly, the expression patterns of these genes displayed "N" shape in the samples. Further, we found 51 genes that were dysregulated during the callus development of E. camaldulensis but without changes in E. grandis x urophylla, such as Eucgr.B02127 (GRF1-interacting factor 1), Eucgr.C00947 (transcription factor MYB36), Eucgr.B02752 (laccase-7), Eucgr.B03985 (transcription factor MYB108), Eucgr.D00536 (GDSL esterase/lipase At5g45920) and Eucgr.B02347 (scarecrow-like protein 34). These 51 genes might be associated with the high propagation ability of Eucalyptus and 22 might be induced after the dedifferentiation. Last, we performed WGCNA to identify the co-expressed genes during the callus development of Eucalyptus and qRT-PCR experiment to validate the gene expression patterns. CONCLUSIONS: This is the first time to globally study the gene profiles during the callus development of Eucalyptus. The results will improve our understanding of gene regulation and molecular mechanisms in the callus maturation and shoot regeneration.


Assuntos
Eucalyptus/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais
16.
Mitochondrial DNA B Resour ; 7(1): 266-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35097210

RESUMO

Nanhaia speciosa (Fabaceae) is a woody perennial vine used as an important traditionally Chinese medicine. In this study, the complete chloroplast genome of Nanhaia speciosa was sequenced and assembled. The chloroplast genome of N. speciosa was 132,551bp in length including only one copy of the inverted repeat (IR). It encoded a total of 110 genes, containing 76 protein-coding genes, 30 tRNA and 4 rRNA. The overall GC content was 34.1%. Phylogenetic analysis using a matrix of 69 protein-coding genes illustrated that N. speciosa is most closely related to Wisteriopsis reticulata of tribe Wisterieae.

17.
Mitochondrial DNA B Resour ; 7(1): 269-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35097211

RESUMO

Cnidoscolus aconitifolius is a leafy green heathy vegetable and medicinal plant belongs to the family Euphorbiaceae. In the present study, we sequenced the complete chloroplast genome of C. aconitifolius, which is 158,658 bp in length and consisted of two copies of inverted repeat (IR) of 26,982 bp separated by a large single copy (LSC) of 87,022 bp and a small single copy (SSC) of 17,672 bp. The GC content of C. aconitifolius was 36.3%. A total of 130 genes were predicted, including 86 protein-coding genes, 36 tRNAs and 8 rRNAs. The plastid phylogenomic analysis support C. aconitifolius is closely related to Manihot esculenta.

18.
Virol J ; 18(1): 208, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670576

RESUMO

OBJECTIVE: To evaluate and understand the prevalence of HPV genotypes and characteristics of female populations in specific areas and the relationship with cervical lesions, which can effectively guide cervical cancer screening and formulate HPV vaccine prevention strategies. METHODS: A total of 77,443 women who visited gynecological clinics and underwent health examinations in the Second Affiliated Hospital of Zhejiang University School of Medicine during 2016-2020 were enrolled in this survey. Cervical samples were collected for HPV DNA genotyping and cervical cytology testing. Cervical biopsies were performed for patients with visible cervical abnormality or abnormal cytological results. RESULTS: The results showed the 5-year overall positive rate was 22.3%, of which the gynecology clinic group had significantly more positive results compared with the health examination group (P < 0.001). The five most common genotypes in Zhejiang Province were HPV 52, 58, CP8304, 16, and 51 (23.9%, 12.7%, 11.7%, 11.7% and 9.3%). HPV infection was age-specific, with the highest infection rate in the age group ≤ 20 compared to other age groups (P < 0.001). HPV infection was also season-specific, with the highest infection rate in spring or winter. The main HPV infection mode was single infection (P = 0.004), but patients ≤ 20 years old were more likely to develop multiple infections (51.0%). HPV 16, 52 and 58 were the main genotypes that caused cytological abnormalities and HPV16, 18, 56, 58 and 66 were independent risk factors for cervical lesions (OR = 2.352, 1.567, 2.000, 1.694, 1.889; all P < 0.05). Further analysis found HPV 16 and 18 were the main genotypes that cause cervical cancer histological abnormalities and were independent risk factors for cervical cancer (OR = 5.647, P < 0.001; OR = 3.495, P = 0.036). CONCLUSION: This article analyzed the prevalence of distribution characteristics of HPV infection and revealed the corelation between HPV infection and cytological and histological abnormalities. Comprehensive results of this survey will help Zhejiang Province to formulate public health policies and provide evidence for future selection of specific HPV vaccines.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Adulto , Detecção Precoce de Câncer , Feminino , Genótipo , Humanos , Papillomaviridae/genética , Prevalência , Neoplasias do Colo do Útero/diagnóstico , Adulto Jovem
19.
Mitochondrial DNA B Resour ; 6(10): 2841-2842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514147

RESUMO

Alnus formosana (Betulaceae) is an important ecological and economic deciduous tree species widely distributed throughout subtropical regions of Taiwan province, China. At the present study, the complete chloroplast genome of A. formosana was assumbled using next-generation sequencing technology. The complete chloroplast sequence is 161,029 bp in length, which consisted of a large single copy (LSC, 89,720 bp) and a small single copy (SSC; 19,205 bp) separated a pair of inverted repeats (IRs; 26,052 bp). The overall guanine-cytosine (GC) content was 36.4%. A total of 131 genes were annotated, including 85 protein-coding genes, 37 tRNAs, eight rRNAs and one pseudogene (ψycf1). The phylogenetic analysis fully resolved A. formosana in a clade with A. japonica. The plastome of A. formosana will provide informative genomic resources for further phylogenetic application and genetic improvement.

20.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33693674

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs (18-24 nt) and function in many biological processes in plants. Although Eucalyptus trees are widely planted across the world, our understanding of the miRNA regulation in the somatic embryogenesis (SE) of Eucalyptus is still poor. Here we reported, for the first time, the miRNA profiles of differentiated and dedifferentiated tissues of two Eucalyptus species and identified miRNAs involved in SE of Eucalyptus. Stem and tissue culture-induced callus were obtained from the subculture seedlings of E. camaldulensis and E. grandis x urophylla and were used as differentiated and dedifferentiated samples, respectively. Small RNA sequencing generated 304.2 million clean reads for the Eucalyptus samples (n = 3) and identified 888 miRNA precursors (197 known and 691 novel) for Eucalyptus. These miRNAs were mainly distributed in chromosomes Chr03, Chr05, and Chr08 and can produce 46 miRNA clusters. Then, we identified 327 and 343 differentially expressed miRNAs (DEmiRs) in the dedifferentiation process of E. camaldulensis and E. grandis x urophylla, respectively. DEmiRs shared by the two Eucalyptus species might be involved in the development of embryonic callus, such as MIR156, MIR159, MIR160, MIR164, MIR166, MIR169, MIR171, MIR399, and MIR482. Notably, we identified 81 upregulated and 67 downregulated miRNAs specific to E. camaldulensis, which might be associated with the high embryogenic potential. Target prediction and functional analysis showed that they might be involved in longevity regulating and plant hormone signal transduction pathways. Further, using the gene expression profiles, we observed the negative regulation of miRNA-target pairs, such as MIR160~ARF18, MIR396~GRF6, MIR166~ATHB15/HD-ZIP, and MIR156/MIR157~SPL1. Interestingly, transcription factors such as WRKY, MYB, GAMYB, TCP4, and PIL1 were found to be regulated by the DEmiRs. The genes encoding PIL1 and RPS21C, regulated by upregulated miRNAs (e.g., egd-N-miR63-5p, egd-N-miR63-5p, and MIR169,) were downregulated exclusively in the dedifferentiation of E. camaldulensis. This is the first time to study the miRNA regulation in the dedifferentiation process of Eucalyptus and it will provide a valuable resource for future studies. More importantly, it will improve our understanding of miRNA regulation during the somatic embryogenesis of Eucalyptus and benefit the Eucalyptus breeding program.


Assuntos
Eucalyptus , MicroRNAs , Desenvolvimento Embrionário , Eucalyptus/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...