Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Metab ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38523538

RESUMO

OBJECTIVE: This study aimed to investigate the effects of clarithromycin and ketoconazole on the pharmacokinetic properties of tacrolimus in different CYP3A4 genotype recombinant metabolic enzyme systems, so as to understand the drug interactions and their mechanisms further. METHOD: The experiment was divided into three groups: a blank control group, CYP3A4*1 group and CYP3A4*18 recombinant enzyme group. Each group was added with tacrolimus (FK506) of a series of concentrations. Then 1 umol/L clarithromycin or ketoconazole was added to the recombinant enzyme group and incubated in the NADPH system for 30 minutes to examine the effects of clarithromycin and ketoconazole on the metabolizing enzymes' activity of different genotypes. The remaining concentration of FK506 in the reaction system was determined using UPLC-MS/MS, and the enzyme kinetic parameters were calculated using the software. RESULTS: The metabolism of CYP3A4*18 to FK506 was greater than that of CyP3А4*1B. Compared with the CYP3A4*1 group, the metabolic rate and clearance of FK506 in the CYP3A4*18 group significantly increased, with Km decreasing. Clarithromycin and ketoconazole inhibit the metabolism of FK506 by affecting the enzyme activity of CYP3A4*1B and CYP3A4*18B. After adding clarithromycin or ketoconazole, the metabolic rate of FK506 significantly decreased in CYP3A4*1 and CYP3A4*18, with Km increasing, Vmax and Clint decreasing. CONCLUSION: Compared with CYP3A4*1, CYP3A4*18 has a greater metabolism of FK506, clarithromycin and ketoconazole can inhibit both the enzymatic activities of CYP3A4*1 and CYP3A4*18, consequently affecting the metabolism of FK506 and the inhibitory on CYP3A4*1 is stronger.

2.
Plant Physiol ; 193(2): 1016-1035, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37440715

RESUMO

Belonging to Rosaceae, red raspberry (Rubus idaeus) and wild strawberry (Fragaria vesca) are closely related species with distinct fruit types. While the numerous ovaries become the juicy drupelet fruits in raspberry, their strawberry counterparts become dry and tasteless achenes. In contrast, while the strawberry receptacle, the stem tip, enlarges to become a red fruit, the raspberry receptacle shrinks and dries. The distinct fruit-forming ability of homologous organs in these 2 species allows us to investigate fruit type determination. We assembled and annotated the genome of red raspberry (R. idaeus) and characterized its fruit development morphologically and physiologically. Subsequently, transcriptomes of dissected and staged raspberry fruit tissues were compared to those of strawberry from a prior study. Class B MADS box gene expression was negatively associated with fruit-forming ability, which suggested a conserved inhibitory role of class B heterodimers, PISTILLATA/TM6 or PISTILLATA/APETALA3, for fruit formation. Additionally, the inability of strawberry ovaries to develop into fruit flesh was associated with highly expressed lignification genes and extensive lignification of the ovary pericarp. Finally, coexpressed gene clusters preferentially expressed in the dry strawberry achenes were enriched in "cell wall biosynthesis" and "ABA signaling," while coexpressed clusters preferentially expressed in the fleshy raspberry drupelets were enriched in "protein translation." Our work provides extensive genomic resources as well as several potential mechanisms underlying fruit type specification. These findings provide the framework for understanding the evolution of different fruit types, a defining feature of angiosperms.


Assuntos
Fragaria , Rubus , Rubus/genética , Frutas/metabolismo , Transcriptoma/genética , Genômica
3.
ACS Biomater Sci Eng ; 9(3): 1541-1557, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36758235

RESUMO

In addition to biocompatibility and bioactivity, scaffolds with superior bone tissue regenerative capacity should possess excellent functionality (e.g., electroactivity and conductivity) and biodegradability matching with the rate of bone reconstruction. However, current conductive scaffolds display a reduced biodegradability rate and weakened biocompatibility. In this study, injectable conductive porous scaffolds were fabricated, incorporating camphor sulfonic acid-doped polyaniline (PANI) into hydroxyapatite/poly(lactide-co-glycolide) (HA/PLGA) scaffolds, using solvent-casting/particulate-leaching methodology. These scaffolds demonstrated excellent electroactivity, conductivity, hydrophilicity, thermodynamic properties, antibacterial properties, and biocompatibility. Their degradation behavior was explored by regulating the PANI content. The results demonstrated that adding an appropriate content of PANI would increase the pore size, porosity, and water absorption of the conductive scaffold and promote the formation of filamentous fiber byproducts with acidic hydrolysates, which accelerated the degradation rate of the scaffold. Owing to π-π stacking and hydrogen bonding, the conductive scaffold with 10 wt % PANI efficiently retarded the decrease in the thermal and mechanical properties of the scaffolds during a 16 week degradation. Thus, better regulation of degradation behavior and correlation would allow conductive porous scaffolds, such as bone implants, to achieve better bone ingrowth and restoration.


Assuntos
Durapatita , Engenharia Tecidual , Engenharia Tecidual/métodos , Alicerces Teciduais , Poliglactina 910 , Porosidade , Osso e Ossos
4.
Andrology ; 11(6): 1121-1131, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36746179

RESUMO

BACKGROUND: Oligoasthenoteratozoospermia (OAT) is one of the most complex aggregators of male gametic problems. However, the genetic etiology of OAT is still largely unknown. OBJECTIVES: To reveal the new genetic factors responsible for male infertility owning to OAT and reveal the outcomes of the affected patients from intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS: Two infertile men with typical OAT were recruited in 2018 and retrospected a cohort that included 47 patients with OAT from 2013 to 2021. Fifty healthy men with proven fertility served as control subjects. To identify the novel pathogenic variants, whole-exome sequencing and Sanger sequencing were used. In silico analysis revealed the affecting of the variants. Field emission scanning electron microscopy was employed to observe the morphological defects of the spermatozoa. Immunofluorescence was used to analyze the expression and localization of the related protein. CRISPR/Cas9 was used to generate the mouse model. ICSI was used as a treatment for the patients and to assess the effects of the pathogenic variant on fertilization and embryo development. RESULTS: We identified a loss-of-function mutation NM_001170574.2:c.823G > T (p.Glu275*) in X-linked TENT5D from two patients with OAT. This variant is highly deleterious and has not been found in the human population. The count of patients' spermatozoa is dramatically decreased and displays multiple morphologic abnormalities with poor motility. Tent5d knockout mice are infertile and exhibit parallel defects. ICSI could rescue the infertility of the Tent5d knockout male mice. Moreover, the proband was treated with ICSI and achieved a successful pregnancy outcome for the first time. Subsequent mutation screening identified no TENT5D mutations among 47 additional patients with OAT and 50 control subjects. CONCLUSION: Mutation in TENT5D results in OAT and male infertility, and this terrible situation could be rescued by ICSI.


Assuntos
Astenozoospermia , Infertilidade Masculina , Oligospermia , Feminino , Animais , Camundongos , Humanos , Masculino , Gravidez , Infertilidade Masculina/genética , Infertilidade Masculina/terapia , Oligospermia/genética , Astenozoospermia/genética , Sêmen , Espermatozoides , Mutação
5.
Biomed Opt Express ; 13(9): 4752-4772, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36187242

RESUMO

Label-free imaging technology is a trending way to simplify and improve conventional hematology analysis by bypassing lengthy and laborious staining procedures. However, the existing methods do not well balance system complexity, data acquisition efficiency, and data analysis accuracy, which severely impedes their clinical translation. Here, we propose defocusing phase-contrast imaging under the illumination of 415 nm light to realize label-free hematology analysis. We have verified that the subcellular morphology of blood components can be visualized without complex staining due to the factor that defocusing can convert the second-order derivative distribution of samples' optical phase into intensity and the illumination of 415 nm light can significantly enhance the contrast. It is demonstrated that the defocusing phase-contrast images for the five leucocyte subtypes can be automatically discriminated by a trained deep-learning program with high accuracy (the mean F1 score: 0.986 and mean average precision: 0.980). Since this technique is based on a regular microscope, it simultaneously realizes low system complexity and high data acquisition efficiency with remarkable quantitative analysis ability. It supplies a label-free, reliable, easy-to-use, fast approach to simplifying and reforming the conventional way of hematology analysis.

6.
Plant J ; 109(6): 1614-1629, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905278

RESUMO

Fruits represent key evolutionary innovations in angiosperms and exhibit diverse types adapted for seed dissemination. However, the mechanisms that underlie fruit type diversity are not understood. The Rosaceae family comprises many different fruit types, including 'pome' and 'drupe' fruits, and hence is an excellent family for investigating the genetic basis of fruit type specification. Using comparative transcriptomics, we investigated the molecular events that correlate with pome (apple) and drupe (peach) fleshy fruit development, focusing on the earliest stages of fruit initiation. We identified PI and TM6, MADS box genes whose expression negatively correlates with fruit flesh-forming tissues irrespective of fruit type. In addition, the MADS box gene FBP9 is expressed in fruit-forming tissues in both species, and was lost multiple times in the genomes of dry-fruit-forming eudicots including Arabidopsis. Network analysis reveals co-expression between FBP9 and photosynthesis genes in both apple and peach, suggesting that FBP9 and photosynthesis may both promote fleshy fruit development. The large transcriptomic datasets at the earliest stages of pome and drupe fruit development provide rich resources for comparative studies, and the work provides important insights into fruit-type specification.


Assuntos
Malus , Prunus persica , Rosaceae , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Malus/genética , Prunus persica/genética , Rosaceae/genética , Transcriptoma/genética
7.
Nat Commun ; 12(1): 5639, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561435

RESUMO

Computer-assisted diagnosis is key for scaling up cervical cancer screening. However, current recognition algorithms perform poorly on whole slide image (WSI) analysis, fail to generalize for diverse staining and imaging, and show sub-optimal clinical-level verification. Here, we develop a progressive lesion cell recognition method combining low- and high-resolution WSIs to recommend lesion cells and a recurrent neural network-based WSI classification model to evaluate the lesion degree of WSIs. We train and validate our WSI analysis system on 3,545 patient-wise WSIs with 79,911 annotations from multiple hospitals and several imaging instruments. On multi-center independent test sets of 1,170 patient-wise WSIs, we achieve 93.5% Specificity and 95.1% Sensitivity for classifying slides, comparing favourably to the average performance of three independent cytopathologists, and obtain 88.5% true positive rate for highlighting the top 10 lesion cells on 447 positive slides. After deployment, our system recognizes a one giga-pixel WSI in about 1.5 min.


Assuntos
Citodiagnóstico/métodos , Aprendizado Profundo , Diagnóstico por Computador/métodos , Detecção Precoce de Câncer , Neoplasias do Colo do Útero/diagnóstico , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Curva ROC , Reprodutibilidade dos Testes
8.
Front Plant Sci ; 12: 644881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868343

RESUMO

Rosaceae, a large plant family of more than 3,000 species, consists of many economically important fruit and ornamental crops, including peach, apple, strawberry, raspberry, cherry, and rose. These horticultural crops are not only important economic drivers in many regions of the world, but also major sources of human nutrition. Additionally, due to the diversity of fruit types in Rosaceae, this plant family offers excellent opportunities for investigations into fleshy fruit diversity, evolution, and development. With the development of high-throughput sequencing technologies and computational tools, an increasing number of high-quality genomes and transcriptomes of Rosaceae species have become available and will greatly facilitate Rosaceae research and breeding. This review summarizes major genomic resources and genome research progress in Rosaceae, highlights important databases, and suggests areas for further improvement. The availability of these big data resources will greatly accelerate research progress and enhance the agricultural productivity of Rosaceae.

9.
Plant Physiol ; 185(3): 1059-1075, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793929

RESUMO

Unlike ovary-derived botanical fruits, strawberry (Fragaria x ananassa) is an accessory fruit derived from the receptacle, the stem tip subtending floral organs. Although both botanical and accessory fruits initiate development in response to auxin and gibberellic acid (GA) released from seeds, the downstream auxin and GA signaling mechanisms underlying accessory fruit development are presently unknown. We characterized GA and auxin signaling mutants in wild strawberry (Fragaria vesca) during early stage fruit development. While mutations in FveRGA1 and FveARF8 both led to the development of larger fruit, only mutations in FveRGA1 caused parthenocarpic fruit formation, suggesting FveRGA1 is a key regulator of fruit set. FveRGA1 mediated fertilization-induced GA signaling during accessory fruit initiation by repressing the expression of cell division and expansion genes and showed direct protein-protein interaction with FveARF8. Further, fvearf8 mutant fruits exhibited an enhanced response to auxin or GA application, and the increased response to GA was due to increased expression of FveGID1c coding for a putative GA receptor. The work reveals a crosstalk mechanism between FveARF8 in auxin signaling and FveGID1c in GA signaling. Together, our work provides functional insights into hormone signaling in an accessory fruit, broadens our understanding of fruit initiation in different fruit types, and lays the groundwork for future improvement of strawberry fruit productivity and quality.


Assuntos
Fragaria/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Plant Biotechnol J ; 18(11): 2267-2279, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32216018

RESUMO

The RAV (related to ABI3/viviparous 1) group of transcription factors (TFs) play multifaceted roles in plant development and stress responses. Here, we show that strawberry (Fragaria × ananassa) FaRAV1 positively regulates anthocyanin accumulation during fruit ripening via a hierarchy of activation processes. Dual-luciferase assay screening of all fruit-expressed AP2/ERFs showed FaRAV1 had the highest transcriptional activation of the promoter of FaMYB10, a key activator of anthocyanin biosynthesis. Yeast one-hybrid and electrophoretic mobility shift assays indicated that FaRAV1 could directly bind to the promoter of FaMYB10. Transient overexpression of FaRAV1 in strawberry fruit increased FaMYB10 expression and anthocyanin production significantly. Correspondingly, transient RNA interference-induced silencing of FaRAV1 led to decreases in FaMYB10 expression and anthocyanin content. Transcriptome analysis of FaRAV1-overexpressing strawberry fruit revealed that transcripts of phenylpropanoid and flavonoid biosynthesis pathway genes were up-regulated. Luciferase assays showed that FaRAV1 could also activate the promoters of strawberry anthocyanin biosynthetic genes directly, revealing a second level of FaRAV1 action in promoting anthocyanin accumulation. These results show that FaRAV1 stimulates anthocyanin accumulation in strawberry both by direct activation of anthocyanin pathway gene promoters and by up-regulation of FaMYB10, which also positively regulates these genes.


Assuntos
Fragaria , Antocianinas , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Chem Commun (Camb) ; 55(85): 12849-12852, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31596284

RESUMO

We report coordination polymers forming from Ag+ and a chiral thiol ligand that bears a ß-turn structure, exhibiting supramolecular chirality showing both the majority rules effect (MRE) and the racemate rules effect (RRE).

12.
Plant Physiol ; 178(1): 189-201, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987002

RESUMO

4-Hydroxy-2,5-dimethyl-3(2H)-furanone is a major contributor to the aroma of strawberry (Fragaria × ananassa) fruit, and the last step in its biosynthesis is catalyzed by strawberry quinone oxidoreductase (FaQR). Here, an ethylene response factor (FaERF#9) was characterized as a positive regulator of the FaQR promoter. Linear regression analysis indicated that FaERF#9 transcript levels were correlated significantly with both FaQR transcripts and furanone content in different strawberry cultivars. Transient overexpression of FaERF#9 in strawberry fruit significantly increased FaQR expression and furaneol production. Yeast one-hybrid assays, however, indicated that FaERF#9 by itself did not bind to the FaQR promoter. An MYB transcription factor (FaMYB98) identified in yeast one-hybrid screening of the strawberry cDNA library was capable of both binding to the promoter and activating the transcription of FaQR by ∼5.6-fold. Yeast two-hybrid assay and bimolecular fluorescence complementation confirmed a direct protein-protein interaction between FaERF#9 and FaMYB98, and in combination, they activated the FaQR promoter 14-fold in transactivation assays. These results indicate that an ERF-MYB complex containing FaERF#9 and FaMYB98 activates the FaQR promoter and up-regulates 4-hydroxy-2,5-dimethyl-3(2H)-furanone biosynthesis in strawberry.


Assuntos
Fragaria/metabolismo , Furanos/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fragaria/genética , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Complexos Multiproteicos/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Org Biomol Chem ; 12(23): 3797-801, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24781849

RESUMO

Selective synthesis of 4-(sulfonyl)-methyl-1H-pyrazoles and (E)-4,5-dihydro-1H-pyrazoles from N-allenic sulfonylhydrazones with sulfonyl group migrations has been developed. A key feature of these reactions is that the migrations of the sulfonyl groups to different positions can be controlled by changing the Lewis acids.


Assuntos
Química Orgânica/métodos , Hidrazonas/síntese química , Pirazóis/síntese química , Ciclização , Hidrazonas/química , Pirazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...