Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475488

RESUMO

In order to study the soil nitrogen (N) distribution pattern in the root zone of chili peppers under aerated drip irrigation (ADI) conditions and analyze the relationship between soil N distribution and crop growth, two irrigation methods (conventional drip irrigation and ADI) and three N levels (0, 140, and 210 kg hm-2) were set up in this experiment. Soil samples were collected by the soil auger method at the end of different reproductive periods, and the uniformity coefficient of soil N in the spatial distribution was calculated by the method of Christiansen's coefficient. The growth status and soil-related indices of pepper were determined at each sampling period, and the relationships between soil N distribution and chili pepper growth were obtained based on principal component analysis (PCA). The results showed that the spatial content of soil nitrate-N (NO3--N) fluctuated little during the whole reproductive period of chili peppers under ADI conditions, and the coefficient of uniformity of soil NO3--N content distribution increased by 5.29~37.63% compared with that of conventional drip irrigation. The aerated treatment increased the root length and surface area of chili peppers. In addition, the ADI treatments increased the plant height, stem diameter, root vigor, and leaf chlorophyll content to some extent compared with the nonaerated treatment. The results of PCA showed that the yield of chili peppers was positively correlated with the uniformity coefficient of soil NO3--N, root vigor, and root length. ADI can significantly improve the distribution uniformity of soil NO3--N and enhance the absorption and utilization of N by the root system, which in turn is conducive to the growth of the crop, the formation of yields, and the improvement of fruit quality.

2.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256824

RESUMO

In order to provide a theoretical basis for the rational application of nitrogen fertilizer for tomatoes under aerated drip irrigation, a model of the critical nitrogen dilution curve was established in this study, and the feasibility of the nitrogen nutrition index (NNI) for the real-time diagnosis and evaluation of the nitrogen nutrient status was explored. The tomato variety "FENOUYA" was used as the test crop, and aerated drip irrigation was adopted by setting three levels of aeration rates, namely, A1 (dissolved oxygen concentration of irrigation water is 5 mg L-1), A2 (dissolved oxygen concentration of irrigation water is 15 mg L-1), and A3 (dissolved oxygen concentration of irrigation water is 40 mg L-1), and three levels of nitrogen rates, namely, N1 (120 kg ha-1), N2 (180 kg ha-1) and N3 (240 kg ha-1). The model of the critical nitrogen concentration dilution of tomatoes under different aerated treatments was established. The results showed that (1) the dry matter accumulation of tomatoes increased with the increase in the nitrogen application rate in a certain range and it showed a trend of first increase and then decrease with the increase in aeration rate. (2) As the reproductive period progressed, the nitrogen concentration in tomato plants showed a decreasing trend. (3) There was a power exponential relationship between the critical nitrogen concentration of tomato plant growth and above-ground biomass under different levels of aeration and nitrogen application rate, but the power exponential curves were characterized by A1 (Nc = 15.674DM-0.658), A2 (Nc = 101.116DM-0.455), A3 (Nc = 119.527DM-0.535), N1 (Nc = 33.819DM-0.153), N2 (Nc = 127.759DM-0.555) and N3 (Nc = 209.696DM-0.683). The standardized root mean square error (n-RMSE) values were 0.08%, 3.68%, 3.79% 0.50%, 1.08%, and 0.55%, which were less than 10%, and the model has good stability. (4) The effect of an increased nitrogen application rate on the critical nitrogen concentration dilution curve was more significant than that of the increase in aeration rate. (5) A nitrogen nutrition index model was built based on the critical nitrogen concentration model to evaluate the nitrogen nutritional status of tomatoes, whereby 180 kg ha-1 was the optimal nitrogen application rate, and 15 mg L-1 dissolved oxygen of irrigation water was the optimal aeration rate for tomatoes.

3.
Plants (Basel) ; 12(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005731

RESUMO

Root hypoxia stress and soil nutrient turnover have been related to reduced crop productivity. Aerated drip irrigation (ADI) can effectively enhance crop productivity and yield. However, the response of the soil bacterial community to different irrigation water dissolved oxygen (DO) concentrations remains elusive due to the extreme sensitivity of microorganisms to environmental variations. We investigated the effects of aerated irrigation with different concentrations of DO on soil properties and agronomic performance of cucumber, as well as the contribution of the bacterial community. We performed experiments on cucumber cultivation in Shouguang, China, including different irrigation methods (ADI: O2-10 and O3-20 mg L-1, non-aerated groundwater: O1-5 mg L-1) and nitrogen (N) application rates: 240 and 360 kg N ha-1. ADI (particularly O2) significantly improved soil properties, root growth, cucumber yields, and irrigation water use efficiency (IWUE), and appropriate DO concentrations reduced N fertilizer application and increased crop yields. Furthermore, these changes were associated with bacterial community diversity, aerobic bacteria abundance, and consolidated bacterial population stability within the network module. Environmental factors such as soil respiration rate (Rs), DO, and NO3--N have significant effects on bacterial communities. The FAPROTAX results demonstrated enhanced nitrification (Nitrospira) and aerobic nitrite oxidation by soil bacteria under ADI, promoting the accumulation of effective soil N and improved soil fertility and crop yield. Appropriate DO concentration is conducive to the involvement of soil bacterial communities in regulating soil properties and cucumber growth performance, which are vital for the sustainable development of facility agriculture.

4.
Planta ; 257(5): 98, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067628

RESUMO

MAIN CONCLUSION: The combination of water and gas at an aeration rate of 15 mg/L and irrigation amount of 0.8 Ep significantly promoted the root morphology, inter-root soil bacterial community structure and diversity of pepper, enhanced the structure of molecular symbiotic network, and stimulated the potential ecosystem function. Poor aeration adversely affects the root morphology of pepper (Capsicum annuum L.) and bacterial community. It is critical to understand the effects of water-air interactions on root morphology and bacterial community structure and diversity. A randomized block experiment was conducted under the two aeration rates of dissolved oxygen mass concentrations, including A: 15 mg/L, O: 40 mg/L, and C: non-aeration as control treatment, and two irrigation rates of W1 and W2 (0.8 Ep and 1.0 Ep). The results showed that aerated irrigation had a significant effect on the root morphology of pepper. Compared with treatment CW1, treatment AW1 increased root dry weight, root length, root volume, and root surface area by 13.63%, 11.09%, 59.47%, and 61.67%, respectively (P < 0.05). Aerated irrigation significantly increased the relative abundance of Actinobacteria, Gemmatimonadetes, Alphaproteobacteria, Gemmatimonas, Sphingomonas, and KD4-96 aerobic beneficial bacteria. It decreased the relative abundance of Proteobacteria, Monomycetes, Bacteroidetes, Corynebacterium, Gammaproteobacteria, Anaerolineae, Subgroup_6, MND1, Haliangium, and Thiobacillus. The Pielou_e, Shannon and Simpson indexes of treatment AW1 were significantly higher than treatments OW1 and CW1. The results of the ß-diversity of bacterial communities showed that the structure of soil bacterial communities differed significantly among treatments. Actinobacteria was a key phylum affecting root morphology, and AW1 treatment was highly correlated with Actinobacteria. Molecular ecological network analysis showed a relatively high number of bacterial network nodes and more complex relationships among species under the aeration of level 15 mg/L and 0.8 Ep, as well as the emergence of new phylum-level beneficial species: Dependentiae, BRC1, Cyanobacteria, Deinococcus-Thermus, Firmicutes, and Planctomycetes. Therefore, the aeration of 15 mg/L and 0.8 times crop-evaporation coefficient can increase root morphology, inter-root soil bacterial community diversity and bacterial network structure, and enhance potential ecosystem functions in the rhizosphere.


Assuntos
Actinobacteria , Capsicum , Solo/química , Ecossistema , Água , Bactérias/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...