Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 15: 1338796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529089

RESUMO

The relationship between anxiety and sleep disorders is a key research topic in the academic community. However, evidence on the mechanism through which anxiety influences sleep disorders remains limited. The purpose of this study was to investigate the roles of flourishing and neuroticism in the mechanism through which anxiety influences sleep disorders in medical students. We constructed a moderated mediation model and tested the mediating role of flourishing and the moderating role of neuroticism in medical college students. The results showed that: (1) anxiety was significantly and positively related to sleep disorders and significantly and negatively related to flourishing; flourishing was significantly and negatively related to sleep disorders; neuroticism was significantly and positively related to sleep disorders; (2) flourishing had a mediation effect on the relationship between anxiety and sleep disorders; (3) neuroticism moderated the process through which flourishing mediated the effect of anxiety on sleep disorders. Our research expands the literature on the mechanism underlying the effects of anxiety on sleep disorders and provides insights into the potential prevention and intervention of sleep and emotional problems in medical students.

2.
Front Cell Neurosci ; 16: 972964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090790

RESUMO

Background: Deafness-dystonia-optic neuronopathy (DDON) syndrome, a condition that predominantly affects males, is caused by mutations in translocase of mitochondrial inner membrane 8A (TIMM8A)/deafness dystonia protein 1 (DDP1) gene and characterized by progressive deafness coupled with other neurological abnormalities. In a previous study, we demonstrated the phenotype of male mice carrying the hemizygous mutation of Timm8a1-I23fs49X. In a follow-up to that study, this study aimed to observe the behavioral changes in the female mutant (MUT) mice with homologous mutation of Timm8a1 and to elucidate the underlying mechanism for the behavioral changes. Materials and methods: Histological analysis, transmission electron microscopy (EM), Western blotting, hearing measurement by auditory brainstem response (ABR), and behavioral observation were compared between the MUT mice and wild-type (WT) littermates. Results: The weight of the female MUT mice was less than that of the WT mice. Among MUT mice, both male and female mice showed hearing impairment, anxiety-like behavior by the elevated plus maze test, and cognitive deficit by the Morris water maze test. Furthermore, the female MUT mice exhibited coordination problems in the balance beam test. Although the general neuronal loss was not found in the hippocampus of the MUT genotype, EM assessment indicated that the mitochondrial size showing as aspect ratio and form factor in the hippocampus of the MUT strain was significantly reduced compared to that in the WT genotype. More importantly, this phenomenon was correlated with the upregulation of translation of mitochondrial fission process protein 1(Mtfp1)/mitochondrial 18 kDa protein (Mtp18), a key fission factor that is a positive regulator of mitochondrial fission and mitochondrial size. Interestingly, significant reductions in the size of the uterus and ovaries were noted in the female MUT mice, which contributed to significantly lower fertility in the MUT mice. Conclusion: Together, a homologous mutation in the Timm8a1 gene caused the hearing impairment and psychiatric behavioral changes in the MUT mice; the latter phenotype might be related to a reduction in mitochondrial size regulated by MTP18.

3.
Front Cell Neurosci ; 16: 855968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783092

RESUMO

Urethane has little effect on nervous system and is often used in neuroscience studies. However, the effect of urethane in neurons is not thoroughly clear. In this study, we investigated changes in neuron responses to tones in inferior colliculus during urethane anesthesia. As urethane was metabolized, the best and characteristic frequencies did not obviously change, but the minimal threshold (MT) remained relatively stable or was elevated. The frequency tuning bandwidth at 60 dB SPL (BW60dBSPL) remained unchanged or decreased, and the average evoked spike of effective frequencies at 60 dB SPL (ES60dBSPL) gradually decreased. Although the average evoked spike of effective frequencies at a tone intensity of 20 dB SPL above MT (ES20dBSPLaboveMT) decreased, the frequency tuning bandwidth at a tone intensity of 20 dB SPL above MT (BW20dBSPLaboveMT) did not change. In addition, the changes in MT, ES60dBSPL, BW60dBSPL, and ES20dBSPLaboveMT increased with the MT in pre-anesthesia awake state (MTpre-anesthesiaawake). In some neurons, the MT was lower, BW60dBSPL was broader, and ES60dBSPL and ES20dBSPLaboveMT were higher in urethane anesthesia state than in pre-anesthesia awake state. During anesthesia, the inhibitory effect of urethane reduced the ES20dBSPLaboveMT, but did not change the MT, characteristic frequency, or BW20dBSPLaboveMT. In the recording session with the strongest neuron response, the first spike latency did not decrease, and the spontaneous spike did not increase. Therefore, we conclude that urethane can reduce/not change the MT, increase the evoked spike, or broaden/not change the frequency tuning range, and eventually improve the response of auditory neurons to tone with or without "pushing down" the tonal receptive field in thresholding model. The improved effect increases with the MTpre-anesthesiaawake of neurons. The changes induced by the inhibitory and improved effects of urethane abide by similar regularities, but the change directions are contrary. The improvement mechanism may be likely due to the increase in the ratio of excitatory/inhibitory postsynaptic inputs to neurons.

4.
J Neurosci ; 42(26): 5254-5267, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35613891

RESUMO

The brain areas that mediate the formation of auditory threat memory and perceptual decisions remain uncertain to date. Candidates include the primary (A1) and secondary (A2) auditory cortex, the medial division of the medial geniculate body (MGm), amygdala, and the temporal association cortex. We used chemogenetic and optogenetic manipulations with in vivo and in vitro patch-clamp recordings to assess the roles of these brain regions in threat memory learning in female mice. We found that conditioned sound (CS) frequency-dependent plasticity resulted in the formation of auditory threat memory in the temporal association cortex. This neural correlated auditory threat memory depended on CS frequency information from A1 glutamatergic subthreshold monosynaptic inputs, CS lateral inhibition from A2 glutamatergic disynaptic inputs, and non-frequency-specific facilitation from MGm glutamatergic monosynaptic inputs. These results indicate that the A2 and MGm work together in an inhibitory-facilitative role.SIGNIFICANCE STATEMENT: The ability to recognize specific sounds to avoid predators or seek prey is a useful survival tool. Improving this ability through experiential learning is an added advantage requiring neural plasticity. As an example, humans must learn to distinguish the sound of a car horn, and thus avoid oncoming traffic. Our research discovered that the temporal association cortex can encode this kind of auditory information through tonal receptive field plasticity. In addition, the results revealed the underlying synaptic mechanisms of this process. These results extended our understanding of how meaningful auditory information is processed in an animal's brain.


Assuntos
Córtex Auditivo , Estimulação Acústica , Tonsila do Cerebelo/fisiologia , Animais , Córtex Auditivo/fisiologia , Condicionamento Clássico/fisiologia , Feminino , Corpos Geniculados/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia
5.
Front Physiol ; 13: 854077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514328

RESUMO

The inferior colliculus (IC) is a critical centre for the binaural processing of auditory information. However, previous studies have mainly focused on the central nucleus of the inferior colliculus (ICC), and less is known about the dorsal nucleus of the inferior colliculus (ICD). Here, we first examined the characteristics of the neuronal responses in the mouse ICD and compared them with those in the inferior colliculus under binaural and monaural conditions using in vivo loose-patch recordings. ICD neurons exhibited stronger responses to ipsilateral sound stimulation and better binaural summation than those of ICC neurons, which indicated a role for the ICD in binaural hearing integration. According to the abundant interactions between bilateral ICDs detected using retrograde virus tracing, we further studied the effect of unilateral ICD silencing on the contralateral ICD. After lidocaine was applied, the responses of some ICD neurons (13/26), especially those to ipsilateral auditory stimuli, decreased. Using whole-cell recording and optogenetic methods, we investigated the underlying neuronal circuits and synaptic mechanisms of binaural auditory information processing in the ICD. The unilateral ICD provides both excitatory and inhibitory projections to the opposite ICD, and the advantaged excitatory inputs may be responsible for the enhanced ipsilateral responses and binaural summation of ICD neurons. Based on these results, the contralateral ICD might modulate the ipsilateral responses of the neurons and binaural hearing.

6.
Neuroreport ; 33(7): 281-290, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35594445

RESUMO

OBJECTIVES: Optogenetics is widely applied to study complex brain networks. However, recent studies have found that light alone can produce effects that are unrelated to optogenetics, and it is still unclear whether this can affect the results of optogenetic experiments. METHODS: We explored the characteristics of projection of interneurons to excitatory neurons in the auditory cortex with optogenetics, transgenic mice and patch-clamp recording. RESULTS: We discovered that postsynaptic responses can be induced when we stimulated a blank area adjacent to the edge of brain slice. Similar results can be observed after blocking the polysynaptic responses by drugs. Together with the results of control experiments, we found that the false response is caused by activating the synaptic terminals beyond the range of the blue light (470 nm). Also, there was a linear relationship between the response and the stimulus distance for all data, which suggested that these false responses may be related to other factors, such as light scattering. CONCLUSIONS: The LED-light-evoked response cannot reflect microcircuit of the recorded neuron and the activated neurons within the illumination range accurately. Together, these results confirm that light alone can affect neural activity, but this can be unrelated to the genuine 'optogenetic effect'.


Assuntos
Optogenética , Terminações Pré-Sinápticas , Animais , Iluminação , Camundongos , Neurônios/fisiologia , Optogenética/métodos , Técnicas de Patch-Clamp
7.
Front Psychol ; 13: 1019402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704679

RESUMO

Background: The relationship between forbearance, a psychological resource, and depression has to date remained inconclusive. The present study investigated heart rate variability (HRV) reactivity to acute stressor tasks in participants with different levels of forbearance to discover how forbearance influences depressive emotions when facing adversity. Method: The study examined the relationship between forbearance and depression, comparing HRV reactivity to stressor tasks in participants with different levels of forbearance. The levels of reported forbearance were assessed by the Forbearance Scale (FS). The Patient Health Questionnaire-9 (PHQ-9) was used to assessed depression severity. HRV reactivity was evaluated at five stages: baseline, the active stressor task, the period of recovery after the active stressor task, the passive stressor task, the period of recovery after the passive stressor task. Results: FS scores had a significant negative correlation with PHQ-9 and a significant positive correlation with HRV; significant differences existed between the basal HRV in the higher and lower FS groups. In the passive stressor task and the period of recovery after the active stressor task, significantly different HRV responses were identified between the two groups. Discussion: Forbearance was correlated with depression and HRV. The present research found differences in HRV among subjects with different levels of forbearance in the baseline as well as stressor and recovery periods, suggesting that self-regulation dysfunction may exist among persons with lower levels of forbearance. Because of the higher levels of forbearance, the negative emotions of individuals caused by adversity are mitigated.

8.
J Neurophysiol ; 125(5): 1954-1972, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852808

RESUMO

Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding.NEW & NOTEWORTHY This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Coclear/fisiologia , Neurônios/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.1/fisiologia , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.2/fisiologia , Canal de Potássio Kv1.6/antagonistas & inibidores , Canal de Potássio Kv1.6/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
9.
Eur J Neurosci ; 53(8): 2511-2531, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33595869

RESUMO

The inferior colliculus (IC) receives inputs from the ascending auditory pathway and helps localize the sound source by shaping neurons' responses. However, the contributions of excitatory or inhibitory synaptic inputs evoked by paired binaural stimuli with different inter-stimulus intervals to auditory responses of IC neurons remain unclear. Here, we firstly investigated the IC neuronal response to the paired binaural stimuli with different inter-stimulus intervals using in vivo loose-patch recordings in anesthetized C57BL/6 mice. It was found that the total acoustic evoked spikes remained unchanged under microsecond interval conditions, but persistent suppression would be observed when the time intervals were extended. We further studied the paired binaural stimuli evoked excitatory/inhibitory inputs using in vivo whole-cell voltage-clamp techniques and blockage of the auditory nerve. The amplitudes of the contralateral excitatory inputs could be suppressed, unaffected or facilitated as the interaural delay varied. In contrast, contralateral inhibitory inputs and ipsilateral synaptic inputs remained almost unchanged. Most IC neurons exhibited the suppression of contralateral excitatory inputs over the interval range of dozens of milliseconds. The facilitative effect was generated by the summation of contralateral and ipsilateral excitation. Suppression and facilitation were completely abolished when ipsilateral auditory nerve was blocked pharmacologically, indicating that these effects were exerted by ipsilateral stimulation. These results suggested that the IC would inherit the binaural inputs integrated at the brainstem as well as within the IC and synaptic excitations, modulated by ipsilateral stimulation, underlie the binaural acoustic response.


Assuntos
Colículos Inferiores , Estimulação Acústica , Animais , Vias Auditivas , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
10.
Front Psychiatry ; 12: 781673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058822

RESUMO

There have been numerous studies on the relationship between sleep and depression, as well as the relationship between sleep and depression, and heart rate variability (HRV), respectively. Even so, few studies have combined 24-h HRV analysis to study sleep quality and depressive symptoms. The purpose of this cross-sectional study was to investigate the relationship between depressed symptoms, sleep quality, and 24-h HRV in medical students. The particiants were all students at a medical university in Guangdong province, China. A total of 74 college students participated. They were asked to complete a questionnaire that included the Pittsburgh Sleep Quality Index (PSQI), the Beck Depression Inventory-II (BDI-II), the Positive and Negative Affect Scale (PANAS), and 24-h ECG monitoring. The results showed that 41.7% of the medical students had poor sleep quality, with higher levels of depressive symptoms and more negative emotions, and there was no difference in 24-h HRV indices between the low PSQI group and the high one. Correlation analysis showed that there was a significant relationship between sleep quality and depressive symptoms (r = 0.617), but the relationship between 24-h HRV indices and PSQI global scores, BDI scores were not significant. However, the correlation analysis of PSQI components and 24-h HRV showed that sleep disturbance was significantly negatively correlated with SDNN and LF in waking period (r = -0.285, -0.235), and with SDNN in sleeping period (r = -0.317). In general, the sleep disturbance in PSQI components can sensitively reflect the relationship between sleep quality and 24-h HRV of medical students. Individuals with higher sleep disturance may have lower SDNN during awake period and bedtime period, and lower LF in awake period. Twenty-four hour HRV has certain application value in clinical sleep quality monitoring, and its sensitivity and specificity in clinical application and daily life are still worth further investigation.

11.
Methods Mol Biol ; 2188: 259-271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33119856

RESUMO

Intact and functioning brain enables quantification of neural activities directly associated with real world such as visual and auditory information. In vivo patch clamp can record different types of neuronal activity, such as spiking responses, membrane potential dynamics, and synaptic currents (e.g., EPSC, IPSC) in either anesthetized or awake or even free moving animals. Researchers can not only directly measure these neuronal activities but also quantify and unravel synaptic contribution from excitatory and inhibitory circuits. Here, we describe the requirements and standard protocols to perform in vivo patch clamp recording. The key factors of successful recording based on references and our experiences are also provided.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Anestesia/métodos , Animais , Encéfalo/citologia , Craniotomia , Feminino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Neurônios/citologia
12.
J Med Genet ; 58(9): 619-627, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32820032

RESUMO

BACKGROUND: Deafness-dystonia-optic neuronopathy (DDON) syndrome is a progressive X-linked recessive disorder characterised by deafness, dystonia, ataxia and reduced visual acuity. The causative gene deafness/dystonia protein 1 (DDP1)/translocase of the inner membrane 8A (TIMM8A) encodes a mitochondrial intermembrane space chaperon. The molecular mechanism of DDON remains unclear, and detailed information on animal models has not been reported yet. METHODS AND RESULTS: We characterized a family with DDON syndrome, in which the affected members carried a novel hemizygous variation in the DDP1 gene (NM_004085.3, c.82C>T, p.Q28X). We then generated a mouse line with the hemizygous mutation (p.I23fs49X) in the Timm8a1 gene using the clustered regularly interspaced short palindromic repeats /Cas9 technology. The deficient DDP1 protein was confirmed by western blot assay. Electron microscopic analysis of brain samples from the mutant mice indicated abnormal mitochondrial structure in several brain areas. However, Timm8a1I23fs49X/y mutation did not affect the import of mitochondria inner member protein Tim23 and outer member protein Tom40 as well as the biogenesis of the proteins in the mitochondrial oxidative phosphorylation system and the manganese superoxide dismutase (MnSOD / SOD-2). The male mice with Timm8a1I23fs49X/y mutant exhibited less weight gain, hearing impairment and cognitive deficit. CONCLUSION: Our study suggests that frameshift mutation of the Timm8a1 gene in mice leads to an abnormal mitochondrial structure in the brain, correlating with hearing and memory impairment. Taken together, we have successfully generated a mouse model bearing loss-of-function mutation in Timm8a1.


Assuntos
Encéfalo/metabolismo , Mutação da Fase de Leitura , Transtornos da Audição/genética , Transtornos da Memória/genética , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Adulto , Alelos , Animais , Encéfalo/patologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Eletroencefalografia , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Transtornos da Audição/diagnóstico , Humanos , Imuno-Histoquímica , Masculino , Transtornos da Memória/diagnóstico , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Linhagem , Fenótipo , Superóxido Dismutase/metabolismo
13.
Neuroscience ; 442: 237-252, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32505746

RESUMO

Although many studies have shown that the prelimbic (PL) cortex of the mPFC is involved in the formation of conditioned freezing behavior, few have considered the acoustic response characteristics of PL cortex. Importantly, the change in auditory response characteristics of the PL cortex after conditional fear learning is largely unknown. Here we used in vivo cell-attached recordings targeting the mPFC during the waking state. We confirmed that the mPFC of adult C57 mice have neurons that respond to noise and tone in the waking state, especially in the PL cortex. Interestingly, the data also confirmed that these neurons responded well to the intensity of sound but did not have frequency topological distribution characteristics. Furthermore, we found that the number of c-fos positive neurons in the PL cortex increased significantly after auditory fear conditioning. The auditory-induced local field potential recordings and in vivo cell-attached recordings demonstrated that the PL cortex was more sensitive to the auditory conditioned stimulus after the acquisition of conditioned fear. The proportion of neurons responding to noise was significantly increased, and the signal to noise ratio of the spikes were also increased. These data reveal that PL neurons themselves responded to the main information (sound intensity), while the secondary information (frequency) response was almost negligible after auditory fear conditioning. This phenomenon may be the functional basis for handling this type of emotional memory, and this response characteristic is thought to be emotional sensitization but does not change the nature of this response.


Assuntos
Medo , Córtex Pré-Frontal , Animais , Condicionamento Clássico , Memória , Camundongos , Neurônios
14.
Front Neurosci ; 13: 1244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824246

RESUMO

In auditory-conditioned fear learning, the freezing response is independent of the sound frequencies used, but the frequency of the conditioned sound is considered distinct from those of unrelated sounds based on electrophysiological responses in the auditory system. Whether an emergent discriminative learning underlies auditory fear conditioning and which nuclei and pathways are involved in it remain unclear. Using behavioral and electrophysiological assays, we found that the response of medial prefrontal cortex (mPFC) neurons to a conditioned auditory stimulus (CS) was enhanced relative to the response to unrelated frequencies (UFs) after auditory fear conditioning, and mice could distinguish the CS during multifrequency testing, a phenomenon called emergent discriminative learning. After silencing the mPFC with muscimol, emergent discriminative learning was blocked. In addition, the pure tone responses of mPFC neurons were inhibited after injection of lidocaine in the ipsilateral primary auditory cortex (A1), and the emergent discriminative learning was blocked by silencing both sides of A1 with muscimol. This study, therefore, provides evidence for an emergent discriminative learning mediated by mPFC and A1 neurons after auditory fear conditioning.

15.
Neurosci Lett ; 708: 134325, 2019 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-31195051

RESUMO

Confirming the effect of general anesthetic on brainstem auditory evoked potential (BAEP) is important to interpret BAEP data, elucidate the neuroanatomical sites of action of general anesthetic and monitor the effect of general anesthetic. However, the effect of general anesthetic on BAEP is not thoroughly understood, which may be due to unreasonable acoustic stimulation scheme. This study aimed to redesign acoustic stimulation scheme and attempted to test our hypothesis that general anesthetic induces differential changes in BAEP latency in mouse. Auditory evoked potential in the central nucleus of inferior colliculus (AEP-ICC) was used to represent BAEP. Every 10 min after pentobarbital anesthesia, AEP-ICC was recorded by delivering tones with a rate of 1/s, and pentobarbital blood concentration (PBC) was measured, until the mice awoke. AEP-ICC latency to 80-dB SPL sounds (L80) and latency change in nerve fibers (ΔL) did not present regular changes, and AEP-ICC latency to 50-dB SPL sounds (L50) and latency change in synapses (ΔI) gradually decreased as pentobarbital was metabolized. L50 and ΔI changes were exponentially associated with decreased PBC, and L50 showed a linear relationship with ΔI. We conclude that, general anesthetic acts on auditory brainstem; general anesthetic does not alter L80 and ΔL but increases L50 and ΔI; L80 and ΔL can evaluate the function of auditory brainstem and its inferior structures under general anesthesia; L50 and ΔI exponentially reflect the blood concentration of a general anesthetic.


Assuntos
Anestésicos Gerais/farmacologia , Potenciais Evocados Auditivos do Tronco Encefálico , Potenciais Evocados Auditivos , Colículos Inferiores/efeitos dos fármacos , Pentobarbital/farmacologia , Estimulação Acústica , Anestésicos Gerais/sangue , Animais , Feminino , Colículos Inferiores/fisiologia , Potenciais Pós-Sinápticos Inibidores , Camundongos Endogâmicos BALB C
16.
Front Cell Neurosci ; 13: 131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024260

RESUMO

Intensity and frequency are the two main properties of sound. The non-monotonic neurons in the auditory system are thought to represent sound intensity. The central nucleus of the inferior colliculus (ICC), as an important information integration nucleus of the auditory system, is also involved in the processing of intensity encoding. Although previous researchers have hinted at the importance of inhibitory effects on the formation of non-monotonic neurons, the specific underlying synaptic mechanisms in the ICC are still unclear. Therefore, we applied the in vivo whole-cell voltage-clamp technique to record the excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) in the ICC neurons, and compared the effects of excitation and inhibition on the membrane potential outputs. We found that non-monotonic neuron responses could not only be inherited from the lower nucleus but also be created in the ICC. By integrating with a relatively weak IPSC, approximately 35% of the monotonic excitatory inputs remained in the ICC. In the remaining cases, monotonic excitatory inputs were reshaped into non-monotonic outputs by the dominating inhibition at high intensity, which also enhanced the non-monotonic nature of the non-monotonic excitatory inputs.

17.
Front Physiol ; 10: 195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886587

RESUMO

The inferior colliculus (IC) is known as a neuronal structure involved in the integration of acoustic information in the ascending auditory pathway. However, the processing of paired acoustic stimuli containing different sound types, especially when they are applied closely, in the IC remains poorly studied. We here firstly investigated the IC neuronal response to the paired stimuli comprising click and pure tone with different inter-stimulus (click-tone) intervals using in vivo loose-patch recordings in anesthetized BALB/c mice. It was found that the total acoustic evoked spike counts decreased under certain click-tone interval conditions on some neurons with or without click-induced supra-threshold responses. Application of click could enhance the minimum threshold of the neurons responding to the tone in a pair without changing other characteristics of the neuronal tone receptive fields. We further studied the paired acoustic stimuli evoked excitatory/inhibitory inputs, IC neurons received, by holding the membrane potential at -70/0 mV using in vivo whole-cell voltage-clamp techniques. The curvature and peak amplitude of the excitatory/inhibitory post-synaptic current (EPSC/IPSC) could be almost unchanged under different inter-stimulus interval conditions. Instead of showing the summation of synaptic inputs, most recorded neurons only had the EPSC/IPSC with the amplitude similar as the bigger one evoked by click or tone in a pair when the inter-stimulus interval was small. We speculated that the IC could inherit the paired click-tone information which had been integrated before reaching it.

18.
Cereb Cortex ; 29(9): 3796-3812, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30307493

RESUMO

Sparse representation is considered an important coding strategy for cortical processing in various sensory modalities. It remains unclear how cortical sparseness arises and is being regulated. Here, unbiased recordings from primary auditory cortex of awake adult mice revealed salient sparseness in layer (L)2/3, with a majority of excitatory neurons exhibiting no increased spiking in response to each of sound types tested. Sparse representation was not observed in parvalbumin (PV) inhibitory neurons. The nonresponding neurons did receive auditory-evoked synaptic inputs, marked by weaker excitation and lower excitation/inhibition (E/I) ratios than responding cells. Sparse representation arises during development in an experience-dependent manner, accompanied by differential changes of excitatory input strength and a transition from unimodal to bimodal distribution of E/I ratios. Sparseness level could be reduced by suppressing PV or L1 inhibitory neurons. Thus, sparse representation may be dynamically regulated via modulating E/I balance, optimizing cortical representation of the external sensory world.


Assuntos
Potenciais de Ação , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Potenciais Evocados Auditivos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Inibição Neural
19.
Cereb Cortex ; 29(7): 2998-3009, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30010857

RESUMO

Spatial size tuning in the visual cortex has been considered as an important neuronal functional property for sensory perception. However, an analogous mechanism in the auditory system has remained controversial. In the present study, cell-attached recordings in the primary auditory cortex (A1) of awake mice revealed that excitatory neurons can be categorized into three types according to their bandwidth tuning profiles in response to band-passed noise (BPN) stimuli: nonmonotonic (NM), flat, and monotonic, with the latter two considered as non-tuned for bandwidth. The prevalence of bandwidth-tuned (i.e., NM) neurons increases significantly from layer 4 to layer 2/3. With sequential cell-attached and whole-cell voltage-clamp recordings from the same neurons, we found that the bandwidth preference of excitatory neurons is largely determined by the excitatory synaptic input they receive, and that the bandwidth selectivity is further enhanced by flatly tuned inhibition observed in all cells. The latter can be attributed at least partially to the flat tuning of parvalbumin inhibitory neurons. The tuning of auditory cortical neurons for bandwidth of BPN may contribute to the processing of complex sounds.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vigília
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(9): 1100-1106, 2018 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-30377110

RESUMO

OBJECTIVE: To investigate the changes in the membrane properties and synaptic stability of the rat retinal ganglion cells (RGCs) during postnatal development. METHODS: Whole-cell patch-clamp technique was used to record the action potentials (AP) and miniature excitatory postsynaptic currents (mEPSC) of SD rat RGCs at postnatal days 7, 14 and 40. The active and passive membrane properties and the synaptic stability (measured by the amplitude, frequency, rise time and decay time of mEPSC) of the RGCs were analyzed using Patchmaster software. RESULTS: Comparison of the RGCs in SD rats across different postnatal ages revealed significant changes in the electrophysiological characteristics of the RGCs during postnatal development. The discharge rate was significantly greater while the AP half-peak width was significantly smaller at postnatal day 15 (P15) than at P7 (P < 0.01), but were both similar between P15 and P40 (P=0.086); in terms of the passive membrane properties, the membrane time constant gradually decreased during the development. The frequency of mEPSCs increased significantly over time during postnatal development (P < 0.01), but was similar between P15 and P40 rats. CONCLUSIONS: In SD rats, the membrane properties and synaptic stability of the RGCs undergo alterations following a specific pattern, which highlights a critical period where distinct changes occur in the electrophysiological characteristics of RGCs, followed by gradual stabilization over time. Such changes in the electrophysiological characteristics represent the basic characteristics of RGCs for visual signal processing, and understanding of this mechanism may provide insights into the exact role of the RGC in visual information processing.


Assuntos
Potenciais de Ação/fisiologia , Células Ganglionares da Retina/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...