Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
Exp Cell Res ; 442(2): 114231, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222869

RESUMO

Prostate cancer (PCa) is threatening the health of millions of people, the pathological mechanism of prostate cancer has not been fully elaborated, and needs to be further explored. Here, we found that the expression of DUSP26 is dramatically suppressed, and a positive connection of its expression with PCa prognosis was also observed. In vitro, overexpression of DUSP26 significantly inhibited the proliferative, migrative, and invasive capacities of PC3 cells, DUSP26 silencing presented opposite results. Tumor formation experiments in subcutaneous nude mice demonstrated that DUSP26 overexpression could significantly suppress PC3 growth in vivo. Moreover, the mechanism of DUSP26 gene and PCa was discovered by RNA-Seq analysis. We found that DUSP26 significantly inhibited MAPK signaling pathway activation, and further experiments displayed that DUSP26 could impair TAK1, p38, and JNK phosphorylation. Interestingly, treatment with the TAK1 inhibitor (iTAK1) attenuated the effect of DUSP26 on PC3 cells. Together, these results suggested that DUSP26 may serve as a novel therapeutic target for PC3 cell type PCa, the underlying mechanism may be through TAK1-JNK/p38 signaling.

3.
Aging (Albany NY) ; 16(11): 9599-9624, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38829766

RESUMO

BACKGROUND: Prostate cancer (PCa) is a malignant tumor of the male reproductive system, and its incidence has increased significantly in recent years. This study aimed to further identify candidate biomarkers with prognostic and diagnostic significance by integrating gene expression and DNA methylation data from PCa patients through association analysis. MATERIAL AND METHODS: To this end, this paper proposes a sparse partial least squares regression algorithm based on hypergraph regularization (HR-SPLS) by integrating and clustering two kinds of data. Next, module 2, with the most significant weight, was selected for further analysis according to the weight of each module related to DNA methylation and mRNAs. Based on the DNA methylation sites in module 2, this paper uses multiple machine learning methods to construct a PCa diagnosis-related model of 10-DNA methylation sites. RESULTS: The results of Receiver Operating Characteristic (ROC) analysis showed that the DNA methylation-related diagnostic model we constructed could diagnose PCa patients with high accuracy. Subsequently, based on the mRNAs in module 2, we constructed a prognostic model for 7-mRNAs (MYH11, ACTG2, DDR2, CDC42EP3, MARCKSL1, LMOD1, and MYLK) using multivariate Cox regression analysis. The prognostic model could predict the disease free survival of PCa patients with moderate to high accuracy (area under the curve (AUC) =0.761). In addition, Gene Set EnrichmentAnalysis (GSEA) and immune analysis indicated that the prognosis of patients in the risk group might be related to immune cell infiltration. CONCLUSIONS: Our findings may provide new methods and insights for identifying disease-related biomarkers by integrating DNA methylation and gene expression data.


Assuntos
Algoritmos , Biomarcadores Tumorais , Metilação de DNA , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Prognóstico , Biomarcadores Tumorais/genética , Análise dos Mínimos Quadrados , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina , Curva ROC
4.
J Clin Invest ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662435

RESUMO

Cancer cells exhibit heightened secretory states that drive tumor progression. Here, we identify a chromosome 3q amplicon that serves as a platform for secretory regulation in cancer. The 3q amplicon encodes multiple Golgi-resident proteins, including the scaffold Golgi integral membrane protein 4 (GOLIM4) and the ion channel ATPase Secretory Pathway Ca2+ Transporting 1 (ATP2C1). We show that GOLIM4 recruits ATP2C1 and Golgi phosphoprotein 3 (GOLPH3) to coordinate calcium-dependent cargo loading and Golgi membrane bending and vesicle scission. GOLIM4 depletion disrupts the protein complex, resulting in a secretory blockade that inhibits the progression of 3q-amplified malignancies. In addition to its role as a scaffold, GOLIM4 maintains intracellular manganese (Mn) homeostasis by binding excess Mn in the Golgi lumen, which initiates the routing of Mn-bound GOLIM4 to lysosomes for degradation. We show that Mn treatment inhibits the progression of multiple types of 3q-amplified malignancies by degrading GOLIM4, resulting in a secretory blockade that interrupts pro-survival autocrine loops and attenuates pro-metastatic processes in the tumor microenvironment. Potentially underlying the selective activity of Mn against 3q-amplified malignancies, ATP2C1 co-amplification increases Mn influx into the Golgi lumen, resulting in a more rapid degradation of GOLIM4. These findings show that functional cooperativity between co-amplified genes underlies heightened secretion and a targetable secretory addiction in 3q-amplified malignancies.

5.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4421-4428, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802868

RESUMO

This study aimed to provide scientific evidence for predicting quality markers(Q-markers) of Elephantopus scaber by establishing UPLC fingerprint of E. scaber from different geographical origins and determining the content of 13 major components, as well as conducting in vitro anti-cancer activity investigation of the main components. The chromatographic column used was Waters CORTECS UPLC C_(18)(2.1 mm×150 mm, 1.6 µm), and the mobile phase consisted of acetonitrile and 0.1% formic acid solution(gradient elution). The column temperature was set at 30 ℃, and the flow rate was 0.2 mL·min~(-1). The injection volume was 1 µL, and the detection wavelength was 240 nm. The UPLC fingerprint of E. scaber was fitted using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(2012 edition) to determine common peaks, evaluate similarity, identify and determine the content of major components. The CCK-8 assay was used to explore the inhibitory effect of the main components on the proliferation of lung cancer cells. The results showed that in the established UPLC fingerprint of E. scaber, 35 common peaks were identified. Thirteen major components, including neochlorogenic acid(peak 1), chlorogenic acid(peak 2), cryptochlorogenic acid(peak 3), caffeic acid(peak 4), schaftoside(peak 6), galuteolin(peak 9), isochlorogenic acid B(peak 10), isochlorogenic acid A(peak 12), isochlorogenic acid C(peak 18), deoxyelephantopin(peak 28), isodeoxyelephantopin(peak 29), isoscabertopin(peak 31), and scabertopin(peak 32) were identified and quantified, and a quantitative analysis method was established. The results of the in vitro anti-cancer activity study showed that deoxyelephantopin, isodeoxyelephantopin, isoscabertopin, and scabertopin in E. scaber exhibited inhibition rates of lung cancer cell proliferation exceeding 80% at a concentration of 10 µmol·L~(-1), higher than the positive drug paclitaxel. These results indicate that the fingerprint of E. scaber is highly characteristic, and the quantitative analysis method is accurate and stable, providing references for the research on quality standards of E. scaber. Four sesquiterpene lactones in E. scaber show significant anti-cancer activity and can serve as Q-markers for E. scaber.


Assuntos
Asteraceae , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Asteraceae/química , Neoplasias Pulmonares/tratamento farmacológico
6.
Proc Natl Acad Sci U S A ; 120(28): e2220276120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406091

RESUMO

Epithelial-to-mesenchymal transition (EMT) underlies immunosuppression, drug resistance, and metastasis in epithelial malignancies. However, the way in which EMT orchestrates disparate biological processes remains unclear. Here, we identify an EMT-activated vesicular trafficking network that coordinates promigratory focal adhesion dynamics with an immunosuppressive secretory program in lung adenocarcinoma (LUAD). The EMT-activating transcription factor ZEB1 drives exocytotic vesicular trafficking by relieving Rab6A, Rab8A, and guanine nucleotide exchange factors from miR-148a-dependent silencing, thereby facilitating MMP14-dependent focal adhesion turnover in LUAD cells and autotaxin-mediated CD8+ T cell exhaustion, indicating that cell-intrinsic and extrinsic processes are linked through a microRNA that coordinates vesicular trafficking networks. Blockade of ZEB1-dependent secretion reactivates antitumor immunity and negates resistance to PD-L1 immune checkpoint blockade, an important clinical problem in LUAD. Thus, EMT activates exocytotic Rabs to drive a secretory program that promotes invasion and immunosuppression in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , MicroRNAs/genética , Terapia de Imunossupressão , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
7.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36757799

RESUMO

Hypersecretory malignant cells underlie therapeutic resistance, metastasis, and poor clinical outcomes. However, the molecular basis for malignant hypersecretion remains obscure. Here, we showed that epithelial-mesenchymal transition (EMT) initiates exocytic and endocytic vesicular trafficking programs in lung cancer. The EMT-activating transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) executed a PI4KIIIß-to-PI4KIIα (PI4K2A) dependency switch that drove PI4P synthesis in the Golgi and endosomes. EMT enhanced the vulnerability of lung cancer cells to PI4K2A small-molecule antagonists. PI4K2A formed a MYOIIA-containing protein complex that facilitated secretory vesicle biogenesis in the Golgi, thereby establishing a hypersecretory state involving osteopontin (SPP1) and other prometastatic ligands. In the endosomal compartment, PI4K2A accelerated recycling of SPP1 receptors to complete an SPP1-dependent autocrine loop and interacted with HSP90 to prevent lysosomal degradation of AXL receptor tyrosine kinase, a driver of cell migration. These results show that EMT coordinates exocytic and endocytic vesicular trafficking to establish a therapeutically actionable hypersecretory state that drives lung cancer progression.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Vesículas Secretórias , Regulação Neoplásica da Expressão Gênica
8.
Food Funct ; 14(2): 874-885, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36537297

RESUMO

Background: Breast cancer (BC) is the most common malignancy worldwide. ERα36 (ERα66 variant) is expressed in many breast cancer cells, especially highly expressed in tamoxifen (TAM)-resistant cell lines and triple-negative breast cancer, and our previous work revealed that nucleolin (NCL) is a protein target of curcumol. This study is aimed at investigating the effect and mechanism of curcumol on ERα36 positive breast cancer cells, and the relationship between curcumol's target protein NCL and ERα36. Study design: Application of in vivo and in vitro studies to reveal the mechanism of curcumol in inhibiting BC growth and the relationship between curcumol's target protein NCL and ERα36. Methods: The anti-tumor effect of curcumol was quantified via an MTT assay, colony formation and cycle arrest, respectively. The expressions of ERα36, NCL and the proteins involved in PI3K/AKT signaling were evaluated by western blotting. The interaction between two proteins was detected using co-immunoprecipitation (Co-IP) and an immunofluorescence assay. A mouse xenograft model was established to verify the role of ERα36 in breast cancer cells and curcumol's effect on ERα36 positive cancer cells. Results: Curcumol inhibited the cell growth, caused cell cycle arrest, decreased cell cycle related proteins and inactivated the PI3K/AKT pathway in ERα36 positive breast cancer cells. There is a positive correlation between NCL and ERα36 in breast cancer cells. In addition, ERα36 bound to NCL; the two proteins were distributed in the nucleus, cytoplasm and plasma membrane, where their expression was obviously decreased by curcumol. Moreover, NCL silenced by NCL siRNA blocked the cell cycle progress and inhibited the activation of PI3K/AKT in MDA-MB-231 cells, while overexpressed ERα36 increased the expression of NCL, promoted the cell cycle progress and enhanced the activity of PI3K/AKT in MCF-7 cells. NCL knockdown or ERα36 overexpression attenuated the effect of curcumol on breast cancer cells. Conclusion: Curcumol reduced the proliferation of breast cancer cells by targeting NCL/ERα36 and inactivating the PI3K/AKT pathway.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Nucleolina
9.
J Oncol ; 2022: 6334546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385959

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most aggressive and deadly cancer of the urinary system and is regulated by multiple signaling pathways. However, the specific molecular mechanisms underlying ccRCC have not been fully studied or demonstrated. This study aimed to elucidate the function of lysosomal-associated transmembrane protein 5 (LAPTM5) in ccRCC cell lines and animal models and determine the potential underlying mechanisms. Our results demonstrated that LAPTM5 expression in patients with ccRCC was significantly higher in the tumor group than that in the adjacent nontumor group. Moreover, LAPTM5 promoted proliferation, migration, and invasion of ccRCC cells through the gain and loss of the function of LAPTM5 in 786-0 and Caki-1 cell lines. Similar results regarding LAPTM5 overexpression were obtained in BALB/c nude mice. In addition, LAPTM5 activated the Jun N-terminal kinase (JNK)/p38 signaling cascade by interacting with Ras-related C3 botulinum toxin substrate 1 (RAC1). Treatment with an RAC1 inhibitor eliminated the effects of LAPTM5 in ccRCC. In conclusion, these results indicate that LAPTM5 may be a new therapeutic target for ccRCC via activation of the RAC1-JNK/p38 axis.

10.
Nat Commun ; 12(1): 6354, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732702

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a transcriptionally governed process by which cancer cells establish a front-rear polarity axis that facilitates motility and invasion. Dynamic assembly of focal adhesions and other actin-based cytoskeletal structures on the leading edge of motile cells requires precise spatial and temporal control of protein trafficking. Yet, the way in which EMT-activating transcriptional programs interface with vesicular trafficking networks that effect cell polarity change remains unclear. Here, by utilizing multiple approaches to assess vesicular transport dynamics through endocytic recycling and retrograde trafficking pathways in lung adenocarcinoma cells at distinct positions on the EMT spectrum, we find that the EMT-activating transcription factor ZEB1 accelerates endocytosis and intracellular trafficking of plasma membrane-bound proteins. ZEB1 drives turnover of the MET receptor tyrosine kinase by hastening receptor endocytosis and transport to the lysosomal compartment for degradation. ZEB1 relieves a plus-end-directed microtubule-dependent kinesin motor protein (KIF13A) and a clathrin-associated adaptor protein complex subunit (AP1S2) from microRNA-dependent silencing, thereby accelerating cargo transport through the endocytic recycling and retrograde vesicular pathways, respectively. Depletion of KIF13A or AP1S2 mitigates ZEB1-dependent focal adhesion dynamics, front-rear axis polarization, and cancer cell motility. Thus, ZEB1-dependent transcriptional networks govern vesicular trafficking dynamics to effect cell polarity change.


Assuntos
Endossomos/metabolismo , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pulmonares/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Actinas/metabolismo , Subunidades sigma do Complexo de Proteínas Adaptadoras , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Polaridade Celular , Citoesqueleto/metabolismo , Endocitose , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Metástase Neoplásica
11.
Nat Commun ; 12(1): 4074, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210960

RESUMO

The c-MET receptor is a receptor tyrosine kinase (RTK) that plays essential roles in normal cell development and motility. Aberrant activation of c-MET can lead to both tumors growth and metastatic progression of cancer cells. C-MET can be activated by either hepatocyte growth factor (HGF), or its natural isoform NK1. Here, we report the cryo-EM structures of c-MET/HGF and c-MET/NK1 complexes in the active state. The c-MET/HGF complex structure reveals that, by utilizing two distinct interfaces, one HGF molecule is sufficient to induce a specific dimerization mode of c-MET for receptor activation. The binding of heparin as well as a second HGF to the 2:1 c-MET:HGF complex further stabilize this active conformation. Distinct to HGF, NK1 forms a stable dimer, and bridges two c-METs in a symmetrical manner for activation. Collectively, our studies provide structural insights into the activation mechanisms of c-MET, and reveal how two isoforms of the same ligand use dramatically different mechanisms to activate the receptor.


Assuntos
Fator de Crescimento de Hepatócito/química , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Células HEK293 , Heparina/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/metabolismo , Receptores da Neurocinina-1/metabolismo
12.
Sci Adv ; 7(25)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34144984

RESUMO

Cancer cells exhibit hyperactive secretory states that maintain cancer cell viability and remodel the tumor microenvironment. However, the oncogenic signals that heighten secretion remain unclear. Here, we show that p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. p53 loss up-regulates the expression of a Golgi scaffolding protein, progestin and adipoQ receptor 11 (PAQR11), which recruits an adenosine diphosphate ribosylation factor 1-containing protein complex that loads cargos into secretory vesicles. PAQR11-dependent secretion of a protease, PLAU, prevents anoikis and initiates autocrine activation of a PLAU receptor/signal transducer and activator of transcription-3-dependent pathway that up-regulates PAQR11 expression, thereby completing a feedforward loop that amplifies prometastatic effector protein secretion. Pharmacologic inhibition of PLAU receptor impairs the growth and metastasis of p53-deficient cancers. Blockade of PAQR11-dependent secretion inhibits immunosuppressive processes in the tumor microenvironment. Thus, Golgi reprogramming by p53 loss is a key driver of hypersecretion in cancer.


Assuntos
Complexo de Golgi , Proteína Supressora de Tumor p53 , Animais , Transporte Biológico , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Camundongos , Transporte Proteico , Receptores de Progesterona/metabolismo , Vesículas Secretórias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Front Chem ; 9: 775226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976949

RESUMO

Clinically, the prognosis of tumor therapy is fundamentally affected by multidrug resistance (MDR), which is primarily a result of enhanced drug efflux mediated by channels in the membrane that reduce drug accumulation in tumor cells. How to restore the sensitivity of tumor cells to chemotherapy is an ongoing and pressing clinical issue. There is a prevailing view that tumor cells turn to glycolysis for energy supply due to hypoxia. However, studies have shown that mitochondria also play crucial roles, such as providing intermediates for biosynthesis through the tricarboxylic acid (TCA) cycle and a plenty of ATP to fuel cells through the complete breakdown of organic matter by oxidative phosphorylation (OXPHOS). High OXPHOS have been found in some tumors, particularly in cancer stem cells (CSCs), which possess increased mitochondria mass and may be depends on OXPHOS for energy supply. Therefore, they are sensitive to inhibitors of mitochondrial metabolism. In view of this, we should consider mitochondrial metabolism when developing drugs to overcome MDR, where mitochondrial RNA polymerase (POLRMT) would be the focus, as it is responsible for mitochondrial gene expression. Inhibition of POLRMT could disrupt mitochondrial metabolism at its source, causing an energy crisis and ultimately eradicating tumor cells. In addition, it may restore the energy supply of MDR cells to glycolysis and re-sensitize them to conventional chemotherapy. Furthermore, we discuss the rationale and strategies for designing new therapeutic molecules for MDR cancers by targeting POLRMT.

14.
Front Genet ; 11: 810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014010

RESUMO

Clear cell renal cell carcinoma (ccRCC) is one of the most common histological subtypes of renal cancer, with a poor prognosis. Our study aimed to identify a biomarker that is significantly associated with ccRCC prognosis and novel immunotherapeutic targets, as well as some novel molecular drugs for ccRCC. Based on the overlap of The Cancer Genome Atlas (TCGA)-Kidney Renal Clear Cell Carcinoma (KIRC) data and the ImmPort database, we obtained 1,292 immune-related genes (IRGs) and constructed a weighed co-expression network based on the IRGs. A total of 39 hub genes were screened out in three modules. CTLA4, which had the highest connectivity degree among the screened genes in a protein-protein interaction network (degree = 24), was selected. Internal validation based on the GEPIA database revealed that patients with a higher expression of CTLA4 had a significantly shorter overall survival time and disease-free survival time. Expression of CTLA4 was also closely correlated with local recurrence, pathologic stage, and immune infiltration level. External validation based on the Oncomine database and merged microarray-acquired dataset validated the mRNA expression level of hub genes. Gene-set enrichment analysis revealed that six KEGG signaling pathways, which were significantly associated with CTLA4, were enriched on immune-related pathways. Further analysis according to the TIMER database demonstrated that CTLA4 expression was positively related to dendritic cells (cor = 0.446, P = 1.32E-23) and negatively associated with tumor purity (cor = -0.267, P = 5.51E-09). Finally, we screened out 293 differentially expressed genes by integrating six datasets from the GEO database. The Connectivity Map (CMap) analysis revealed the strong potential of three small molecule drugs (monensin, quercetin, and fenbufen) for ccRCC treatment. In conclusion, CTLA4 was identified and validated in prognosis of ccRCC. CTLA4 may be a new prognostic biomarker and immunotherapeutic target for ccRCC. Monensin, quercetin, and fenbufen may be novel choices for ccRCC treatment.

15.
Front Oncol ; 10: 1532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984006

RESUMO

Objectives: Prostate cancer (PC) is the second most frequent tumor in men, which has a high recurrence rate and poor prognosis. Therefore, this study aimed to identify novel prognostic biomarkers and therapeutic targets for immunotherapy and small molecule drugs for PC treatment. Materials and Methods: The Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm was applied to calculate immune scores and stromal scores of TCGA-PRAD data. Differentially expressed genes (DEGs) were identified using R package "limma." GO, KEGG, and DO analyses were performed to analyze DEGs. Overall survival and disease-free survival analyses were conducted for hub gene identification. To validate the hub gene at the mRNA and protein expression levels, genetic alterations were measured, and CCLE and Cox regression analyses were performed. Connectivity map (CMap) analysis and GSEA were performed for drug exploration and function analysis, respectively. Results: Immune scores ranged from -1795.98 to 2339.39, and stomal scores ranged from -1877.60 to 1659.96. In total, 45 tumor microenvironment (TME)-related DEGs were identified, of which Complement C7 (C7) was selected and validated as a hub gene. CMap analysis identified six small molecule drugs as potential agents for PC treatment. Further analysis demonstrated that C7 expression was significantly correlated with clinical T, pathological N, and immune infiltration level. Conclusions: In conclusion, of the 45 TME-related DEGs, C7 was shown to correlate with PC prognosis in patients, indicating it as a novel prognostic biomarker and immunotherapy target in PC. Additionally, six small molecule drugs showed strong therapeutic potential for PC treatment.

16.
PLoS Biol ; 18(7): e3000778, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32678845

RESUMO

The evolution of transformed cancer cells into metastatic tumors is, in part, driven by altered intracellular signaling downstream of receptor tyrosine kinases (RTKs). The surface levels and activity of RTKs are governed mainly through clathrin-mediated endocytosis (CME), endosomal recycling, or degradation. In turn, oncogenic signaling downstream of RTKs can reciprocally regulate endocytic trafficking by creating feedback loops in cells to enhance tumor progression. We previously showed that FCH/F-BAR and Double SH3 Domain-Containing Protein (FCHSD2) has a cancer-cell specific function in regulating CME in non-small-cell lung cancer (NSCLC) cells. Here, we report that FCHSD2 loss impacts recycling of the RTKs, epidermal growth factor receptor (EGFR) and proto-oncogene c-Met (MET), and shunts their trafficking into late endosomes and lysosomal degradation. Notably, FCHSD2 depletion results in the nuclear translocation of active extracellular signal-regulated kinase 1 and 2 (ERK1/2), leading to enhanced transcription and up-regulation of EGFR and MET. The small GTPase, Ras-related protein Rab-7A (Rab7), is essential for the FCHSD2 depletion-induced effects. Correspondingly, FCHSD2 loss correlates to higher tumor grades of NSCLC. Clinically, NSCLC patients expressing high FCHSD2 exhibit elevated survival, whereas patients with high Rab7 expression display decreased survival rates. Our study provides new insight into the molecular nexus for crosstalk between oncogenic signaling and RTK trafficking that controls cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/metabolismo , Endocitose , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Oncogenes , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Progressão da Doença , Endossomos/metabolismo , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/enzimologia , Transporte Proteico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores da Transferrina/metabolismo , Regulação para Cima , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008484

RESUMO

Serum metabonomic profiles of the model of focal cerebral ischemia reperfusion is established with the suture-occluded method by Longa to study the effect of ginsenosides. In this study, 48 rats were randomly divided into six groups: sham-operated group, pathological model group, positive drug group(6 mg·kg~(-1)·d~(-1)) and high, medium, low-dose ginsenosides groups(200, 100, 50 mg·kg~(-1)·d~(-1)). They are given intragastric administration respectively with same amount of 0.5% CMC-Na,nimodipine and ginsenoside for 5 days. At 2 h after the final administration, the model was established with the suture-occluded method, and free radical-scavenging activity changes of ginsenoside were observed by maillard reaction, and Longa was possible used as a renoprotective agent-occluded method. At the end of 24 h after the reperfusion, the hemolymph of rats in each group was collected, and the ~1H-NMR spectrum was collected after being treated by certain methods, and analyzed by principal component analysis(PCA). Compared with sham-operated group, pathological model group showed significant increases in the levels of lactate, glutamate, taurine, choline, glucose and methionine, but decreases in the levels of 3-hydroxybutyrate and phosphocreatine/creatine in serum. After treatment with ginsenosides, lipid, 3-hydroxybutyrate and phosphocreatine/creatine were increased in the serum of ginsenosides group rats, but with decreases in lactate and glutamate. The results showed that ginsenosides could regulate metabolic disorders in rats with focal cerebral ischemia reperfusion, and promote a recovery in the process of metabolism. It's helpful to promote the metabolic changes in rats with focal cerebral ischemia reperfusion via ~1H-NMR, and lay a foundation to develop ginsenosides as a new drug to treat ischemic cerebral paralysis.


Assuntos
Animais , Ratos , Ácido 3-Hidroxibutírico , Isquemia Encefálica/metabolismo , Creatina , Ginsenosídeos/farmacologia , Hemolinfa , Metaboloma , Fosfocreatina , Espectroscopia de Prótons por Ressonância Magnética , Distribuição Aleatória , Traumatismo por Reperfusão/metabolismo
18.
BMC Complement Altern Med ; 19(1): 233, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31464618

RESUMO

BACKGROUND: Resveratrol is reported to inhibit the growth of prostate, which is characteristic of benign prostatic hyperplasia (BPH) condition. However, the mechanism remains unclear. This study aimed to identify the effects and probable mechanism of resveratrol on BPH. METHODS: We used the BPH epithelial cell line BPH-1 to investigate the effect of resveratrol. Cells were treated with various concentrations of resveratrol, and its effects on cells viability, apoptosis, ROS accumulation, and cell cycle were assessed. Western blot was used to examine activation of p38 MAPK and protein levels of FOXO3a, Bcl2, Bcl-XL, and caspase3. Cells were also co-treated with the p38 MAPK inhibitor SB203580 or ROS scavenger N-Acetyl-L-cysteine (NAC) to further investigate the mechanism. RESULTS: Resveratrol treatment inhibited the growth of BPH-1 and increased apoptosis of cells. In addition, levels of phosphorylated p38 MAPK level was elevated and FOXO3a repression was observed. Concomitantly, ROS was accumulated. All of these resveratrol-mediated effects were suppressed by additional treatment with SB203580 or NAC. Resveratrol was also found to induce cell cycle arrest at S phase. CONCLUSIONS: Resveratrol can activate p38 MAPK and repress FOXO3a, thereby causing repression of SOD2, catalase, and increase of ROS accumulation, leading to apoptosis in BPH-1 cells.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Hiperplasia Prostática/metabolismo , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-773279

RESUMO

China is highly rich of medicinal plants. Traditional Chinese medicine(TCM) has a long history and is important traditional resources in China. As one of the important strategic resources and the link among all the countries along the ancient "Silk Road", TCM has played important role in economy, politics, society and ecology. With the initiative of the "Belt and Road" in recent years, many natural resources of TCM now are facing the risk of extinction due to more and more frequent trade between China and other countries, also the increase of export has influenced to the stock of TCM. In order to prevent the loss of the resources, strengthen the protection and sustainable use of TCM, our study provided the strategies to the natural resources of TCM's entry-exit supervision from nine aspects, like law and regulation system, based on the analysis of current supervision status quo.


Assuntos
China , Conservação dos Recursos Naturais , Medicamentos de Ervas Chinesas , Ecologia , Medicina Tradicional Chinesa , Plantas Medicinais
20.
Proc Natl Acad Sci U S A ; 115(41): E9570-E9579, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249660

RESUMO

Clathrin-mediated endocytosis (CME) regulates the uptake of cell-surface receptors as well as their downstream signaling activities. We recently reported that signaling can reciprocally regulate CME in cancer cells and that this crosstalk can contribute to cancer progression. To further explore the nature and extent of the crosstalk between signaling and CME in cancer cell biology, we analyzed a panel of oncogenic signaling kinase inhibitors for their effects on CME across a panel of normal and cancerous cells. Inhibition of several kinases selectively affected CME in cancer cells, including inhibition of ERK1/2, which selectively inhibited CME by decreasing the rate of clathrin-coated pit (CCP) initiation. We identified an ERK1/2 substrate, the FCH/F-BAR and SH3 domain-containing protein FCHSD2, as being essential for the ERK1/2-dependent effects on CME and CCP initiation. Our data suggest that ERK1/2 phosphorylation activates FCHSD2 and regulates EGF receptor (EGFR) endocytic trafficking as well as downstream signaling activities. Loss of FCHSD2 activity in nonsmall cell lung cancer (NSCLC) cells leads to increased cell-surface expression and altered signaling downstream of EGFR, resulting in enhanced cell proliferation and migration. The expression level of FCHSD2 is positively correlated with higher NSCLC patient survival rates, suggesting that FCHSD2 can negatively affect cancer progression. These findings provide insight into the mechanisms and consequences of the reciprocal regulation of signaling and CME in cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/biossíntese , Clatrina/farmacocinética , Endocitose , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Clatrina/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA