Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.839
Filtrar
1.
J Environ Sci (China) ; 147: 282-293, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003047

RESUMO

There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Poluentes do Solo/análise , China , Medição de Risco , Hidrocarbonetos Policíclicos Aromáticos/análise , Humanos , Solo/química , Interações Hidrofóbicas e Hidrofílicas , Retardadores de Chama/análise , Hidrocarbonetos Clorados/análise
2.
Phytomedicine ; 132: 155825, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38968790

RESUMO

BACKGROUND: Chemotherapeutic agents including cisplatin, gemcitabine, and pemetrexed, significantly enhance the efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) by increasing PD-L1 expression and potentiating T cell cytotoxicity. However, the low response rate and adverse effects limit the application of chemotherapy/ICI combinations in patients. METHODS: We screened for medicinal herbs that could perturb PD-L1 expression and enhance T cell cytotoxicity in the presence of anti-PD-L1 antibody, and investigated the underlying mechanisms. RESULTS: We found that the aqueous extracts of Centipeda minima (CM) significantly enhanced the cancer cell-killing activity and granzyme B expression level of CD8+ T cells, in the presence of anti-PD-L1 antibody. Both CM and its active component 6-O-angeloylplenolin (6-OAP) upregulated PD-L1 expression by suppressing GSK-3ß-ß-TRCP-mediated ubiquitination and degradation. CM and 6-OAP significantly enhanced ICI-induced reduction of tumor burden and prolongation of overall survival of mice bearing NSCLC cells, accompanied by upregulation of PD-L1 and increase of CD8+ T cell infiltration. CM also exhibited anti-NSCLC activity in cells and in a patient-derived xenograft mouse model. CONCLUSIONS: These data demonstrated that the induced expression of PD-L1 and enhancement of CD8+ T cell cytotoxicity underlay the beneficial effects of 6-OAP-rich CM in NSCLCs, providing a clinically available and safe medicinal herb for combined use with ICIs to treat this deadly disease.

3.
New Phytol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978318

RESUMO

Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus. Through comparative analysis of five world-wide Populus species, we observed the influence of mutational bias and adaptive selection on the distribution of rare variants. RVAS identified 75 candidate genes correlated with stomatal size (SS)/stomatal density (SD), and a rare haplotype in the promoter of serine/arginine-rich splicing factor PtoRSZ21 emerged as the foremost association signal governing SS. As a positive regulator of drought tolerance, PtoRSZ21 can recruit the core splicing factor PtoU1-70K to regulate alternative splicing (AS) of PtoATG2b (autophagy-related 2). The rare haplotype PtoRSZ21hap2 weakens binding affinity to PtoMYB61, consequently affecting PtoRSZ21 expression and SS, ultimately resulting in differential distribution of Populus accessions in arid and humid climates. This study enhances the understanding of regulatory mechanisms that underlie AS induced by rare variants and might provide targets for drought-tolerant varieties breeding in Populus.

4.
Ren Fail ; 46(2): 2367708, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38973391

RESUMO

BACKGROUND: Cellular senescence, macrophages infiltration, and vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation participate in the pathophysiology of vascular calcification in chronic kidney disease (CKD). Senescent macrophages are involved in the regulation of inflammation in pathological diseases. In addition, senescent cells spread senescence to neighboring cells via Interferon-induced transmembrane protein3 (IFITM3). However, the role of senescent macrophages and IFITM3 in VSMCs calcification remains unexplored. AIMS: To explore the hypothesis that senescent macrophages contribute to the calcification and senescence of VSMCs via IFITM3. METHODS: Here, the macrophage senescence model was established using Lipopolysaccharides (LPS). The VSMCs were subjected to supernatants from macrophages (MCFS) or LPS-induced macrophages (LPS-MCFS) in the presence or absence of calcifying media (CM). Senescence-associated ß-galactosidase (SA-ß-gal), Alizarin red (AR), immunofluorescent staining, and western blot were used to identify cell senescence and calcification. RESULTS: The expression of IFITM3 was significantly increased in LPS-induced macrophages and the supernatants. The VSMCs transdifferentiated into osteogenic phenotype, expressing higher osteogenic differentiation markers (RUNX2) and lower VSMCs constructive makers (SM22α) when cultured with senescent macrophages supernatants. Also, senescence markers (p16 and p21) in VSMCs were significantly increased by senescent macrophages supernatants treated. However, IFITM3 knockdown inhibited this process. CONCLUSIONS: Our study showed that LPS-induced senescence of macrophages accelerated the calcification of VSMCs via IFITM3. These data provide a new perspective linking VC and aging, which may provide clues for diagnosing and treating accelerated vascular aging in patients with CKD.


Assuntos
Senescência Celular , Lipopolissacarídeos , Macrófagos , Proteínas de Membrana , Músculo Liso Vascular , Proteínas de Ligação a RNA , Calcificação Vascular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Lipopolissacarídeos/farmacologia , Calcificação Vascular/patologia , Calcificação Vascular/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Células Cultivadas , Animais , Osteogênese , Transdiferenciação Celular
5.
Adv Sci (Weinh) ; : e2400305, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962954

RESUMO

Acute kidney injury (AKI) signifies a sudden and prolonged decline in kidney function characterized by tubular cell death and interstitial inflammation. Small nucleolar RNAs (snoRNAs) play pivotal roles in oxidative stress and inflammation, and may play an important role in the AKI process, which remains elusive. an elevated expression of Snord3a is revealed in renal tubules in response to AKI and demonstrates that Snord3a deficiency alleviates renal injury in AKI mouse models. Notably, the deficiency of Snord3a exhibits a mitigating effect on the stimulator of interferon genes (STING)-associated ferroptosis phenotypes and the progression of tubular injury. Mechanistically, Snord3a is shown to regulate the STING signaling axis via promoting STING gene transcription; administration of Snord3a antisense oligonucleotides establishes a significant therapeutic advantage in AKI mouse models. Together, the findings elucidate the transcription regulation mechanism of STING and the crucial roles of the Snord3a-STING axis in ferroptosis during AKI, underscoring Snord3a as a potential prognostic and therapeutic target for AKI.

6.
Animals (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998005

RESUMO

Egg production traits are crucial in the poultry industry, including age at first egg (AFE), egg number (EN) at different stages, and laying rate (LR). Ducks exhibit higher egg production capacity than other poultry species, but the genetic mechanisms are still poorly understood. In this study, we collected egg-laying data of 618 Peking ducks from 22 to 66 weeks of age and genotyped them by whole-genome resequencing. Genetic parameters were calculated based on SNPs, and a genome-wide association study (GWAS) was performed for these traits. The SNP-based heritability of egg production traits ranged from 0.09 to 0.54. The GWAS identified nine significant SNP loci associated with AFE and egg number from 22 to 66 weeks. These loci showed that the corresponding alleles were positively correlated with a decrease in the traits. Moreover, three potential candidate genes (ENSAPLG00020011445, ENSAPLG00020012564, TMEM260) were identified. Functional enrichment analyses suggest that specific immune responses may have a critical impact on egg production capacity by influencing ovarian function and oocyte maturation processes. In conclusion, this study deepens the understanding of egg-laying genetics in Peking duck and provides a sound theoretical basis for future genetic improvement and genomic selection strategies in poultry.

7.
Anal Chem ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007441

RESUMO

G-quadruplex structures within the nuclear genome (nG4) is an important regulatory factor, while the function of G4 in the mitochondrial genome (mtG4) still needs to be explored, especially in human sperms. To gain a better understanding of the relationship between mtG4 and mitochondrial function, it is crucial to develop excellent probes that can selectively visualize and track mtG4 in both somatic cells and sperms. Herein, based on our previous research on purine frameworks, we attempted for the first time to extend the conjugated structure from the C-8 site of purine skeleton and discovered that the purine derivative modified by the C-8 aldehyde group is an ideal platform for constructing near-infrared probes with extremely large Stokes shift (>220 nm). Compared with the compound substituted with methylpyridine (PAP), the molecule substituted with methylthiazole orange (PATO) showed better G4 recognition ability, including longer emission (∼720 nm), more significant fluorescent enhancement (∼67-fold), lower background, and excellent photostability. PATO exhibited a sensitive response to mtG4 variation in both somatic cells and human sperms. Most importantly, PATO helped us to discover that mtG4 was significantly increased in cells with mitochondrial respiratory chain damage caused by complex I inhibitors (6-OHDA and rotenone), as well as in human sperms that suffer from oxidative stress. Altogether, our study not only provides a novel ideal molecular platform for constructing high-performance probes but also develops an effective tool for studying the relationship between mtG4 and mitochondrial function in both somatic cells and human sperms.

8.
mSystems ; : e0035424, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842321

RESUMO

Beneficial interactions between plants and rhizosphere fungi can enhance plant adaptability during drought stress. However, harnessing these interactions will require an in-depth understanding of the response of fungal community assembly to drought. Herein, by using different varieties of wheat plants, we analyzed the drought-induced changes in fungal community assembly in rhizosphere and bulk soil. We demonstrated that drought significantly altered the fungal communities, with the contribution of species richness to community beta diversity increased in both rhizosphere and bulk soil compartments during drought stress. The stochastic processes dominated fungal community assembly, but the relative importance of deterministic processes, mainly homogeneous selection, increased in the drought-stressed rhizosphere. Drought induced an increase in the relative abundance of generalists in the rhizosphere, as opposed to specialists, and the top 10 abundant taxa that enriched under drought conditions were predominantly generalists. Notably, the most abundant drought-enriched taxon in rhizosphere was a generalist, and the corresponding Chaetomium strain was found capable of improving root length and activating ABA signaling in wheat plants through culture-based experiment. Together, these findings provide evidence that host plants exert a strong influence on rhizospheric fungal community assembly during stress and suggest the fungal communities that have experienced drought have the potential to confer fitness advantages to the host plants. IMPORTANCE: We have presented a framework to integrate the shifts in community assembly processes with plant-soil feedback during drought stress. We found that environmental filtering and host plant selection exert influence on the rhizospheric fungal community assembly, and the re-assembled community has great potential to alleviate plant drought stress. Our study proposes that future research should incorporate ecology with plant, microbiome, and molecular approaches to effectively harness the rhizospheric microbiome for enhancing the resilience of crop production to drought.

9.
Environ Sci Technol ; 58(23): 10275-10286, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38825773

RESUMO

The pronounced lethality of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone or 6PPDQ) toward specific salmonids, while sparing other fish species, has received considerable attention. However, the underlying cause of this species-specific toxicity remains unresolved. This study explored 6PPDQ toxicokinetics and intestinal microbiota composition in adult zebrafish during a 14-day exposure to environmentally realistic concentrations, followed by a 7-day recovery phase. Predominant accumulation occurred in the brain, intestine, and eyes, with the lowest levels in the liver. Six metabolites were found to undergo hydroxylation, with two additionally undergoing O-sulfonation. Semiquantitative analyses revealed that the predominant metabolite featured a hydroxy group situated on the phenyl ring adjacent to the quinone. This was further validated by assessing enzyme activity and determining in silico binding interactions. Notably, the binding affinity between 6PPDQ and zebrafish phase I and II enzymes exceeded that with the corresponding coho salmon enzymes by 1.04-1.53 times, suggesting a higher potential for 6PPDQ detoxification in tolerant species. Whole-genome sequencing revealed significant increases in the genera Nocardioides and Rhodococcus after exposure to 6PPDQ. Functional annotation and pathway enrichment analyses predicted that these two genera would be responsible for the biodegradation and metabolism of xenobiotics. These findings offer crucial data for comprehending 6PPDQ-induced species-specific toxicity.


Assuntos
Biotransformação , Microbioma Gastrointestinal , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo
10.
Imeta ; 3(2): e174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882499

RESUMO

The Lachnospiraceae family holds promise as a source of next-generation probiotics, yet a comprehensive delineation of its diversity is lacking, hampering the identification of suitable strains for future applications. To address this knowledge gap, we conducted an in-depth genomic and functional analysis of 1868 high-quality genomes, combining data from public databases with our new isolates. This data set represented 387 colonization-selective species-level clusters, of which eight genera represented multilineage clusters. Pan-genome analysis, single-nucleotide polymorphism (SNP) identification, and probiotic functional predictions revealed that species taxonomy, habitats, and geography together shape the functional diversity of Lachnospiraceae. Moreover, analyses of associations with atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel disease (IBD) indicated that several strains of potentially novel Lachnospiraceae species possess the capacity to reduce the abundance of opportunistic pathogens, thereby imparting potential health benefits. Our findings shed light on the untapped potential of novel species enabling knowledge-based selection of strains for the development of next-generation probiotics holding promise for improving human health and disease management.

11.
ACS Nano ; 18(26): 16790-16807, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38869479

RESUMO

The smaller size fraction of plastics may be more substantially existing and detrimental than larger-sized particles. However, reports on nanoplastics (NPs), especially their airborne occurrences and potential health hazards to the respiratory system, are scarce. Previous studies limit the understanding of their real respiratory effects, since sphere-type polystyrene (PS) nanoparticles differ from NPs occurring in nature with respect to their physicochemical properties. Here, we employ a mechanical breakdown method, producing NPs directly from bulk plastic, preserving NP properties in nature. We report that among four relatively high abundance NP materials PS, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polyethylene (PE) with a size of 100 nm, PVC induced slightly more severe lung toxicity profiles compared to the other plastics. The lung cytotoxicity of NPs is higher than that of commercial PS NPs and comparable to natural particles silicon dioxide (SiO2) and anatase titanium dioxide (TiO2). Mechanistically, BH3-interacting domain death agonist (Bid) transactivation-mediated mitochondrial dysfunction and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy or ferroptosis are likely common mechanisms of NPs regardless of their chemical composition. This study provides relatively comprehensive data for evaluating the risk of atmospheric NPs to lung health.


Assuntos
Mitocôndrias , Nanopartículas , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Nanopartículas/química , Ferritinas/metabolismo , Ferritinas/química , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Microplásticos/química , Tamanho da Partícula , Poliestirenos/química , Ferroptose/efeitos dos fármacos
12.
Front Microbiol ; 15: 1379500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873165

RESUMO

Introduction: Faecalibacterium is one of the most abundant bacteria in the gut microbiota of healthy adults, highly regarded as a next-generation probiotic. However, the functions of Faecalibacterium genomes from cultured strains and the distribution of different species in populations may differ among different sources. Methods: We here performed an extensive analysis of pan-genomes, functions, and safety evaluation of 136 Faecalibacterium genomes collected from 10 countries. Results: The genomes are clustered into 11 clusters, with only five of them were characterized and validly nomenclated. Over 80% of the accessory genes and unique genes of Faecalibacterium are found with unknown function, which reflects the importance of expanding the collection of Faecalibacterium strains. All the genomes have the potential to produce acetic acid and butyric acid. Nine clusters of Faecalibacterium are found significantly enriched in the healthy individuals compared with patients with type II diabetes.. Discussion: This study provides a comprehensive view of genomic characteristic and functions and of culturable Faecalibacterium bacterium from human gut, and enables clinical advances in the future.

13.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727348

RESUMO

The porous architectures of oxygen cathodes are highly desired for high-capacity lithium-oxygen batteries (LOBs) to support cathodic catalysts and provide accommodation for discharge products. However, controllable porosity is still a challenge for laminated cathodes with cathode materials and binders, since polymer binders usually shield the active sites of catalysts and block the pores of cathodes. In addition, polymer binders such as poly(vinylidene fluoride) (PVDF) are not stable under the nucleophilic attack of intermediate product superoxide radicals in the oxygen electrochemical environment. The parasitic reactions and blocking effect of binders deteriorate and then quickly shut down the operation of LOBs. Herein, the present work proposes a binder-free three-dimensional (3D) porous graphene (PG) cathode for LOBs, which is prepared by the self-assembly and the chemical reduction of GO with triblock copolymer soft templates (Pluronic F127). The interconnected mesoporous architecture of resultant 3D PG cathodes achieved an ultrahigh capacity of 10,300 mAh g-1 for LOBs. Further, the cathodic catalysts ruthenium (Ru) and manganese dioxide (MnO2) were, respectively, loaded onto the inner surface of PG cathodes to lower the polarization and enhance the cycling performance of LOBs. This work provides an effective way to fabricate free-standing 3D porous oxygen cathodes for high-performance LOBs.

14.
Molecules ; 29(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792134

RESUMO

In this study, the design and asymmetric synthesis of a series of chiral targets of orientational chirality were conducted by taking advantage of N-sulfinylimine-assisted nucleophilic addition and modified Sonogashira catalytic coupling systems. Orientational isomers were controlled completely using alkynyl/alkynyl levers [C(sp)-C(sp) axis] with absolute configuration assignment determined by X-ray structural analysis. The key structural element of the resulting orientational chirality is uniquely characterized by remote through-space blocking. Forty examples of multi-step synthesis were performed, with modest to good yields and excellent orientational selectivity. Several chiral orientational amino targets are attached with scaffolds of natural and medicinal products, showing potential pharmaceutical and medical applications in the future.

15.
J Hazard Mater ; 472: 134526, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704908

RESUMO

The proliferation of toxic organisms caused by changes in the marine environment, coupled with the rising human activities along the coastal lines, has resulted in an increasing number of stinging incidents, posing a serious threat to public health. Here, we evaluated the systemic toxicity of the venom in jellyfish Chrysaora quinquecirrha at both cellular and animal levels, and found that jellyfish tentacle extract (TE) has strong lethality accompanied by abnormal elevation of blood biochemical indicators and pathological changes. Joint analysis of transcriptome and proteome indicated that metalloproteinases are the predominant toxins in jellyfish. Specially, two key metalloproteinases DN6695_c0_g3 and DN8184_c0_g7 were identified by mass spectrometry of the red blood cell membrane and tetracycline hydrochloride (Tch) inhibition models. Structurally, molecular docking and kinetic analysis are employed and observed that Tch could inhibit the enzyme activity by binding to the hydrophobic pocket of the catalytic center. In this study, we demonstrated that Tch impedes the metalloproteinase activity thereby reducing the lethal effect of jellyfish, which suggests a potential strategy for combating the health threat of marine toxic jellyfish.


Assuntos
Venenos de Cnidários , Metaloproteases , Simulação de Acoplamento Molecular , Cifozoários , Animais , Metaloproteases/química , Metaloproteases/metabolismo , Venenos de Cnidários/química , Tetraciclina/toxicidade , Transcriptoma/efeitos dos fármacos
16.
Heliyon ; 10(9): e30495, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765070

RESUMO

Vaginitis, characterized by pathogenic invasion and a deficiency in beneficial lactobacilli, has recognized lactobacilli supplementation as a novel therapeutic strategy. However, due to individual differences in vaginal microbiota, identifying universally effective Lactobacillus strains is challenging. Traditional methodologies for probiotic selection, which heavily depend on extensive in vitro experiments, are both time-intensive and laborious. The aim of this study was to pinpoint possible vaginal probiotic candidates based on whole-genome screening. We sequenced the genomes of 98 previously isolated Lactobacillus strains, annotating their genes involved in probiotic metabolite biosynthesis, adherence, acid/bile tolerance, and antibiotic resistance. A scoring system was used to assess the strains based on their genomic profiles. The highest-scoring strains underwent further in vitro evaluation. Consequently, two strains, Lactobacillus crispatus LG55-27 and Lactobacillus gasseri TM13-16, displayed an outstanding ability to produce d-lactate and adhere to human vaginal epithelial cells. They also showed higher antimicrobial activity against Gardnerella vaginalis, Escherichia coli, Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa compared to reference Lactobacillus strains. Their resilience to acid and bile environments highlights the potential for oral supplementation. Oral and vaginal administration of these two strains were tested in a bacterial vaginosis (BV) rat model at various doses. Results indicated that combined vaginal administration of these strains at 1 × 106 CFU/day significantly mitigated BV in rats. This research offers a probiotic dosage guideline for vaginitis therapy, underscoring an efficient screening process for probiotics using genome sequencing, in vitro testing, and in vivo BV model experimentation.

17.
Heliyon ; 10(9): e30555, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726183

RESUMO

Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint damage. Circular RNA (circRNA) can regulate the inflammatory response of fibroblast-like synoviocytes (FLSs) in RA, influencing the disease progression. Paeoniflorin (PF) is the main active ingredient extracted from Paeonia lactiflora and is known for its anti-inflammatory effect. This study aims to explore the potential mechanisms by which hsa_circ_009012 and PF regulate the inflammatory response in RA. Methods: RNA expression of hsa_circ_009012, has-microRNA-1286 (miR-1286), toll-like receptor 4 (TLR4), NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) or western blotting (WB). Cell inflammation markers (TNF-α, IL-1ß, IL-6) were assessed by RT-qPCR and immunofluorescence (IF). Counting Kit-8 (CCK-8) assay, flow cytometry, and transwell assay were utilized to test cell viability, cell cycle distribution, and migration. Results: Hsa_circ_009012 was highly expressed in RA-FLS. Hsa_circ_009012 over-expression facilitated the inflammation in RA-FLS and was closely associated with the miR-1286/TLR4 axis. Paeoniflorin inhibited inflammation and the expression of hsa_circ_009012 and TLR4, while upregulating the expression of miR-1286 in RA-FLS. Moreover, the upregulation of hsa_circ_009012 reversed the repressive effect of paeoniflorin on RA-FLS progression. Conclusion: Paeoniflorin inhibits the inflammation of RA-FLS via mediating the hsa_circ_009012/miR-1286/TLR4/NLRP3 axis.

18.
Front Immunol ; 15: 1369849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779681

RESUMO

Background: Stomolophus meleagris envenomation causes severe cutaneous symptoms known as jellyfish dermatitis. The potential molecule mechanisms and treatment efficiency of dermatitis remain elusive because of the complicated venom components. The biological activity and molecular regulation mechanism of Troxerutin (TRX) was firstly examined as a potential treatment for jellyfish dermatitis. Methods: We examined the inhibit effects of the TRX on tentacle extract (TE) obtained from S. meleagris in vivo and in vitro using the mice paw swelling models and corresponding assays for Enzyme-Linked Immunosorbent Assay (ELISA) Analysis, cell counting kit-8 assay, flow cytometry, respectively. The mechanism of TRX on HaCaT cells probed the altered activity of relevant signaling pathways by RNA sequencing and verified by RT-qPCR, Western blot to further confirm protective effects of TRX against the inflammation and oxidative damage caused by TE. Results: TE significantly induced the mice paw skin toxicity and accumulation of inflammatory cytokines and reactive oxygen species in vivo and vitro. Moreover, a robust increase in the phosphorylation of mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways was observed. While, the acute cutaneous inflammation and oxidative stress induced by TE were significantly ameliorated by TRX treatment. Notablly, TRX suppressed the phosphorylation of MAPK and NF-κB by initiating the nuclear factor erythroid 2-related factor 2 signaling pathway, which result in decreasing inflammatory cytokine release. Conclusion: TRX inhibits the major signaling pathway responsible for inducing inflammatory and oxidative damage of jellyfish dermatitis, offering a novel therapy in clinical applications.


Assuntos
Dermatite , Hidroxietilrutosídeo , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Cifozoários , Transdução de Sinais , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Dermatite/tratamento farmacológico , Dermatite/metabolismo , Dermatite/etiologia , Humanos , Hidroxietilrutosídeo/análogos & derivados , Hidroxietilrutosídeo/farmacologia , Hidroxietilrutosídeo/uso terapêutico , Venenos de Cnidários/farmacologia , Heme Oxigenase-1/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células HaCaT , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana
19.
World J Stem Cells ; 16(5): 538-550, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38817334

RESUMO

BACKGROUND: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM: To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS: Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS: In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION: We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.

20.
J Radiat Res ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818645

RESUMO

To investigate the levels of 131I activity in thyroid of workers at the place of radioiodine therapy and their main influential factors in China, 341 workers at 38 hospitals performing radioiodine therapy procedure in five provinces were recruited to be measured in 2021. A hand-held gamma spectrometer with NaI(Tl) probe was plastered to the thyroids and thighs of the subjects during the measurement, and each measurement time was 120 s. The internal exposure dose was calculated, and the committed effective dose was estimated. In 86 (25.22%) of the 341 examined workers, 131I thyroid activity was above minimum detectable activity (MDA, 26.6 Bq). The maximum activity was 4.9 × 103 Bq. The detection results above MDA were at 22 (57.89%) different hospitals. The detectable rate for private hospitals (4.8%) was significantly lower than that for public hospitals (26.6%), P < 0.05. The detectable rate for hospitals in provincial capital cities (15.4%) was significantly lower than in nonprovincial capital cities (41.7%), P < 0.001. The detectable rate for hospitals engaged in 131I therapy for thyroid cancer (31.2%) was significantly higher than only for hyperthyroidism (10.3%), P < 0.001. A total of 32 subjects' committed effective dose might exceed 1 mSv. Results indicated the 131I activity in the thyroid of workers at the place of radioiodine varied considerably in China, and mainly related to ownership, location and therapy program of the hospitals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...