Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38995412

RESUMO

99mTc-HFAPI can visualize fibroblast activation in hypertensive hearts. Myocardial work (MW) reflects the cardiac mechanical properties after accounting for the afterload in hypertensive patients. We investigated whether MW was associated with increased uptake of 99mTc-HFAPI. A total of 97 hypertensive patients and 41 healthy volunteers were prospectively recruited. Global work index (GWI), global constructive work (GCW), global wasted work (GWW) and global work efficiency (GWE) were analyzed. According to whether myocardial uptake of FAPI was higher than the adjacent blood pool, hypertensive patients were divided into two groups, namely: FAPI + and FAPI- group, respectively. GWI, GCW and GWE of the FAPI + group were lower than the FAPI- group. The value of GWW in the FAPI + group was higher than in the FAPI- group. Multiple regression analyses revealed GWI, GWW and GWE were independently associated with early myocardial fibrosis. According to receiver operating characteristics (ROC) analysis, the best cutoff points for FAPI + of GWI, GWW and GWE were 1968.50 mmHg% (AUC: 0.687, 95% CI: 0.581-0.793, P = 0.002), 133.00 mmHg% (AUC: 0.778, 95% CI: 0.688-0.869, P < 0.001) and 95.07% (AUC: 0.813, 95% CI: 0.730-0.896, P < 0.001), respectively. GWI, GWW and GWE were impaired in hypertensive patients with cardiac 99mTc-HFAPI uptake and were associated with fibroblast activation in hypertensive hearts.

2.
J Nucl Cardiol ; : 101910, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009216

RESUMO

BACKGROUND: Despite improved treatments for acute myocardial infarction (AMI), myocardial fibrosis remains a key driver of adverse left ventricular (LV) remodeling and increased mortality. Fibroblast activation and proliferation significantly contribute to this process by enhancing cardiac fibrosis, which can lead to detrimental changes in LV structure. This study evaluates the effectiveness of 99mTc-labeled fibroblast activation protein inhibitor (99mTc-HFAPi) SPECT imaging in predicting LV remodeling over 12 months in post-AMI patients. METHODS: A cohort of 58 AMI patients (46 males, median age 61 [53, 67] years) underwent baseline 99mTc-HFAPi imaging (5 ± 2 days post-MI), perfusion imaging (6 ± 2 days post-MI), and echocardiography (2 ± 2 days post-MI). Additionally, 15 patients had follow-up 99mTc-HFAPi and perfusion imaging, while 30 patients had follow-up echocardiography. Myocardial 99mTc-HFAPi activity was assessed at the patient level. LV remodeling was defined as a ≥10% increase in LV end-diastolic diameter (LVEDD) or LV end-systolic diameter (LVESD) from baseline to follow-up echocardiography. RESULTS: AMI patients displayed localized but non-uniform 99mTc-HFAPi uptake, exceeding perfusion defects. Baseline 99mTc-HFAPi activity exhibited significant correlations with BNPmax, LDHmax, cTNImax, and WBCmax, inversely correlating with LVEF. After 12 months, 11 patients (36.66%) experienced LV remodeling. Univariate regression analysis demonstrated an association between baseline 99mTc-HFAPi uptake extent and LV remodeling (OR = 2.14, 95%CI, 1.04, 4.39, P = 0.038). CONCLUSIONS: 99mTc-HFAPi SPECT imaging holds promise in predicting LV remodeling post-MI, providing valuable insights for patient management and prognosis.

3.
Rev Cardiovasc Med ; 25(5): 161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076498

RESUMO

Background: This study aimed to explore the association between cardiac fibroblast activation and cardiac magnetic resonance (CMR) imaging parameters in patients with myocarditis following infection with coronavirus 2019 (COVID-19). Methods: In this prospective study, four patients with COVID-19-related myocarditis underwent 99mTc-labeled-hydrazinonicotinamide-fibroblast activation protein inhibitor-04 (99mTc-HFAPi) single photon emission computed tomography/computed tomography (SPECT/CT) and CMR imaging. Segmental 99mTc-HFAPi activity was quantified as the percentage of average segmental myocardial count × global left ventricular target-to-background ratio. T1/T2 values, extracellular volume (ECV), and late gadolinium enhancement (LGE) were analyzed by CMR. The consistency between myocardial 99mTc-HFAPi activity and CMR parameters was explored. Results: In patients with myocarditis, the proportion of segments with abnormal 99mTc-HFAPi activity was significantly higher than in those with abnormal LGE (81.25% vs. 60.93%, p = 0.011), abnormal T2 (81.25% vs. 50.00%, p < 0.001), and abnormal ECV (81.25% vs. 59.38%, p = 0.007); however, they were similar in those with abnormal native T1 (81.25% vs. 73.43%, p = 0.291). Meanwhile, 99mTc-HFAPi imaging exhibited good consistency with native T1 (kappa = 0.69). Conclusions: Increased cardiac 99mTc-HFAPi activity is present in COVID-19-related myocarditis, which is correlated with the native T1 values in CMR.

4.
EBioMedicine ; 103: 105137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703606

RESUMO

BACKGROUND: Coronary artery disease (CAD) is a prevalent cardiovascular condition, and numerous studies have linked gut bacterial imbalance to CAD. However, the relationship of gut fungi, another essential component of the intestinal microbiota, with CAD remains poorly understood. METHODS: In this cross-sectional study, we analyzed fecal samples from 132 participants, split into 31 healthy controls and 101 CAD patients, further categorized into stable CAD (38), unstable angina (41), and acute myocardial infarction (22) groups. We conducted internal transcribed spacer 1 (ITS1) and 16S sequencing to examine gut fungal and bacterial communities. FINDINGS: Based on ITS1 analyses, Ascomycota and Basidiomycota were the dominant fungal phyla in all the groups. The α diversity of gut mycobiome remained unaltered among the control group and CAD subgroups; however, the structure and composition of the mycobiota differed significantly with the progression of CAD. The abundances of 15 taxa gradually changed with the occurrence and progression of the disease and were significantly correlated with major CAD risk factor indicators. The mycobiome changes were closely linked to gut microbiome dysbiosis in patients with CAD. Furthermore, disease classifiers based on gut fungi effectively identified subgroups with different degrees of CAD. Finally, the FUNGuild analysis further categorized these fungi into distinct ecological guilds. INTERPRETATION: In conclusion, the structure and composition of the gut fungal community differed from healthy controls to various subtypes of CAD, revealing key fungi taxa alterations linked to the onset and progression of CAD. Our study highlights the potential role of gut fungi in CAD and may facilitate the development of novel biomarkers and therapeutic targets for CAD. FUNDING: This work was supported by the grants from the National Natural Science Foundation of China (No. 82170302, 92168117, 82370432), National clinical key specialty construction project- Cardiovascular Surgery, the Reform and Development Program of Beijing Institute of Respiratory Medicine (No. Ggyfz202417, Ggyfz202308), the Beijing Natural Science Foundation (No. 7222068); and the Clinical Research Incubation Program of Beijing Chaoyang Hospital Affiliated to Capital Medical University (No. CYFH202209).


Assuntos
Doença da Artéria Coronariana , Microbioma Gastrointestinal , Micobioma , Humanos , Doença da Artéria Coronariana/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Fezes/microbiologia , Metagenômica/métodos , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Índice de Gravidade de Doença , Disbiose/microbiologia , Estudos de Casos e Controles , RNA Ribossômico 16S/genética , Adulto
5.
Eur Heart J Case Rep ; 8(5): ytae189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711681

RESUMO

Background: Myocardial fibrosis is a key pathological factor for the occurrence of ventricular arrhythmias in hypertrophic obstructive cardiomyopathy (HOCM). Case summary: This case series reports on two patients diagnosed with HOCM who underwent 18F-fibroblast activation protein inhibitor (FAPI) positron-emission tomography/computed tomography imaging and Morrow myotomy procedure. The collected myocardial tissue was examined histopathologically. Both patients exhibited intense and heterogeneous 18F-FAPI uptake in the septum, with significant number of activated fibroblasts. Discussion: Enhanced 18F-FAPI uptake was observed before irreversible fibrosis, and the degree of 18F-FAPI uptake was higher in tissue with greater fibrosis. 18F-FAPI imaging may provide a promising tool for guiding surgical strategy in HOCM, and further research is needed to fully explore its potential in clinical practice.

6.
Front Biosci (Landmark Ed) ; 29(4): 149, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682191

RESUMO

BACKGROUND: The diagnostic potential of circular RNAs (circRNAs) in circulating exosomes for acute myocardial infarction (AMI) is not well understood, despite existing research indicating their role in cardiovascular diseases. This study aimed to clarify the significance of exosomal circular RNAs as indicators for AMI. METHODS: We examined 120 individuals diagnosed with AMI and 83 individuals with non-cardiogenic chest pain (NCCP), all previously enrolled in a conducted study. High-throughput sequencing to identify differentially expressed circRNAs in the circulating exosomes of AMI patients. To validate, we employed Real-Time polymerase chain reaction (RT-PCR) targeting five circRNAs that exhibited notable increase. RESULTS: The sequencing identified 893 exosomal circRNAs with altered expression in AMI patients, including 118 up-regulated and 775 down-regulated circRNAs. Genes linked to these circRNAs were enriched in crucial Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, highlighting their direct relevance to AMI pathophysiology. Three exosomal circRNAs (hsa_circ_0001558, hsa_circ_0001535, and hsa_circ_0000972) showed significant up-regulation in AMI patients during the initial validation cohort. The corresponding area under the curve (AUC) values were 0.79, 0.685, and 0.683, respectively. Further validation of hsa_circ_0001558 in a second cohort showed a 4.45-fold increase in AMI patients, with AUC = 0.793. The rise was particularly noticeable in patients with non-ST-elevation myocardial infarction (NSTEMI) (2.80 times, AUC = 0.72) and patients with ST-elevation myocardial infarction (STEMI) (5.27 times, AUC = 0.831) compared to patients with NCCP. CONCLUSIONS: Our findings demonstrate significant differences in the expression patterns of circRNAs in plasma exosomes between AMI patients and NCCP patients. Specifically, hsa_circ_0001558 appears as a promising indicator for AMI diagnosis. Further research is necessary to fully evaluate the diagnostic potential of exosomal circRNAs in the context of AMI, emphasizing the importance of these findings.


Assuntos
Biomarcadores , Exossomos , Infarto do Miocárdio , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/sangue , Exossomos/genética , Exossomos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Biomarcadores/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Estudos de Casos e Controles
7.
Biomedicines ; 12(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397900

RESUMO

The gut microbiome's imbalance has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), yet the contribution of the gut mycobiome remains largely unclear. This study delineates the gut mycobiome profile in PAH and examines its interplay with the bacterial microbiome alterations. Fecal samples from monocrotaline-induced PAH rats and matched controls were subjected to internal transcribed spacer 1 (ITS1) sequencing for fungal community assessment and 16S ribosomal RNA (rRNA) gene sequencing for bacterial community characterization. Comparative analysis revealed no significant disparities in the overall mycobiome diversity between the PAH and control groups. However, taxonomic profiling identified differential mycobiome compositions, with the PAH group exhibiting a significant enrichment of genera such as Wallemia, unidentified_Branch02, Postia, Malassezia, Epicoccum, Cercospora, and Alternaria. Conversely, genera Xeromyces, unidentified_Plectosphaerellaceae, and Monilia were more abundant in the controls. Correlations of Malassezia and Wallemia abundance with hemodynamic parameters were observed. Indications of bidirectional fungal-bacterial community interactions were also noted. This investigation reveals distinct gut mycobiome alterations in PAH, which are intricately associated with concurrent bacterial microbiome changes, suggesting a possible contributory role of gut fungi in PAH pathophysiology. These findings underscore the potential for novel gut mycobiome-targeted therapeutic interventions in PAH management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA