Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(27): 14922-14931, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364237

RESUMO

Quantum sensing affords the possibility of using quantum entanglement to probe electromagnetic fields with exquisite sensitivity. In this work, we show that a photogenerated spin-correlated radical ion pair (SCRP) can be used to sense an electric field change created at one radical ion of the pair using molecular recognition. The SCRP is generated within a covalent donor-chromophore-acceptor system PXX-PMI-NDI, 1, where PXX = peri-xanthenoxanthene, PMI = 1,6-bis(p-t-butylphenoxy)perylene-3,4-dicarboximide, and NDI = naphthalene-1,8:4,5-bis(dicarboximide). The electron-rich PXX donor in 1 acts as a guest molecule that can be encapsulated selectively by a tetracationic cyclophane ExBox4+ host to give a supramolecular complex 1 ⊂ ExBox4+. Selective photoexcitation of the PMI chromophore results in ultrafast generation of the PXX•+-PMI-NDI•- SCRP. When PXX is encapsulated by ExBox4+, the cyclophane generates an electric field that repels the positive charge on PXX•+ within PXX•+-PMI-NDI•-, reducing the SCRP distance, i.e., the distance between the centers-of-charge on the donor and acceptor. Pulse-EPR measurements are used to measure the coherent oscillations created primarily by the electron-electron dipolar coupling in the SCRP, which yields the distance between the two charges (spins) of PXX•+-PMI-NDI•-. The experimental results show that the distance between PXX•+ and NDI•- decreases when ExBox4+ encapsulates PXX•+, which demonstrates that the SCRP can function as a quantum sensor to detect electric field changes in the vicinity of the radical ions.

2.
Chemphyschem ; 19(22): 2972-2977, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30085398

RESUMO

Organic semiconductors for spin-based devices require long spin relaxation times. Understanding their spin relaxation mechanisms is critical to organic spintronic devices and applications for quantum information processing. However, reports on the spin relaxation mechanisms of organic conjugated molecules are rare and the research methods are also limited. Herein, we study the molecular design and spin relaxation mechanisms by systematically varying the structure of a conjugated radical. We found that solid-state relaxation times of organic materials are largely different from that in solution state. We demonstrate that substitution of a lower gyromagnetic ratio nucleus (e. g. D, Cl) on the para-position of the aryl rings in the triphenylmethyl (TM) radical can significantly improve their coherence times (Tm ). Flexible thin films based on such radicals exhibit ultra-long spin-lattice relaxation times (T1 ) up to 35.6(6) µs and Tm up to 1.08(4) µs under ambient conditions, which are among the longest values in films. More importantly, using the TM radical derivative (5CM), we observed room-temperature quantum coherence and Rabi cycles in thin film for the first time, suggesting that organic conjugated radicals have great potentials for spin-based information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...