Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Pediatr ; 11(2): 260-269, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35282029

RESUMO

Background: During treatment of acute respiratory failure (ARF) in children, sedation can reduce pain, improve tolerance, and reduce the incidence of adverse events, so selecting an appropriate sedation strategy is very important for improving prognosis and quality of life. Both dexmedetomidine and propofol have good sedative effects, so we investigated the application of these drugs in critically ill children with ARF by literature search and meta-analysis. Methods: We searched Embase, The Cochrane Library, PubMed, Ovid, Clinicaltrials.org, and Google Scholar for randomized controlled trials (RCTs) preferentially but not exclusively, and used RevMan 5.4 to analyze the screened literature. Results: Seven studies were included in the quantitative meta-analysis, with a total of 1,188 patients. There was no significant difference in the effect of dexmedetomidine and propofol on the duration of tracheal intubation in children with ARF [mean difference (MD) =-0.05; 95% confidence interval (CI): (-0.42, 0.32); Z=0.26; P=0.79], but dexmedetomidine sedation could reduce the intensive care unit (ICU) stay in children with ARF [MD =-0.62; 95% CI: (-1.08, -0.16); Z=2.65; P=0.008], and shorten the total hospital stay [MD =-1.94; 95% CI: (-2.63, -1.25); Z=5.48; P<0.00001]. There was no significant effect on mortality between the two groups [odds ratio (OR) =0.48; 95% CI: (0.19, 1.25); Z=1.50; P=0.13]. The incidence rate of bradycardia with dexmedetomidine sedation was higher than with propofol [OR =12.30; 95% CI: (2.28, 66.47); Z=2.92; P=0.004], and the incidence of hypotension was also higher [OR =6.99, 95% CI: (1.22, 39.86); Z=2.19; P=0.03]. Discussion: Compared with propofol, dexmedetomidine can significantly reduce the ICU stay and hospital stay. However, bradycardia and hypotension may occur during the use of dexmedetomidine, which requires close attention and timely intervention.

2.
Nan Fang Yi Ke Da Xue Xue Bao ; 29(5): 876-9, 2009 May.
Artigo em Chinês | MEDLINE | ID: mdl-19460697

RESUMO

OBJECTIVE: To investigate the effects of ulinastatin on lung injury in hemorrhagic shock rats. METHODS: Twenty-four normal SD rats were randomly divided into 3 groups (n=8), namely the control group, hemorrhagic shock group (group H) and ulinastatin group (group U). In group H and group U, blood was drawn from the femoral artery over a period of 10 min until a mean arterial pressure of 40 mmHg was obtained. Controlled hypotension was then maintained at 40-/+5 mmHg for 60 min by blood drawing or infusion when necessary. All the blood drawn and an equivalent volume of Ringer lactate solution were subsequently infused for resuscitation. Four hours after the resuscitation, the activity of superoxidedismutase (SOD), content of malondialdehyde (MDA), expression of heme oxygenase-1 (HO-1), wet to dry weight ratio (W/D), and pathologic changes of the lung tissues were measured or observed. RESULTS: Compared with those in the control group, the content of MDA, expression of HO-1 and W/D increased significantly in both group H and group U (P<0.05); these indexes in group U were significantly lower than those in group H (P<0.05). The activity of SOD in group U was significantly lower than that in the control group (P<0.05) but higher than that in group H (P<0.05). Optical microscopy demonstrated milder inflammatory cell infiltration and interstitial edema in the lung tissues in group U than in group H. CONCLUSION: Ulinastatin can lower the content of MDA, W/D and the expression of HO-1, increase the activity of SOD, and reduce histological lung injury in rats with hemorrhagic shock.


Assuntos
Glicoproteínas/farmacologia , Lesão Pulmonar/prevenção & controle , Choque Hemorrágico/metabolismo , Superóxido Dismutase/metabolismo , Animais , Heme Oxigenase-1/metabolismo , Lesão Pulmonar/etiologia , Masculino , Malondialdeído/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/complicações
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 29(2): 242-5, 2009 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-19246289

RESUMO

OBJECTIVE: To investigate the cerebral uptake and regional distribution of propofol when plasma propofol concentration reaches equilibrium in the internal carotid artery and internal jugular vein in dogs. METHODS: Eight male hybrid dogs aged 12-18 months weighing 10-12 kg were anesthetized with propofol at a single bolus (7 mg/kg) in 15 s followed by propofol infusion at a constant rate of 70 mg.kg(-1).h(-1) via the great saphenous vein of the right posterior limb. Blood samples were taken from the internal carotid artery and internal jugular vein at 30 min (T30) after propofol infusion for measurement of plasma propofol concentrations by high-pressure liquid chromatography (HPLC). The thalamus, epithalamus, metathalamus, hypothalamus, subthalamus, frontal lobe, parietal lobe, temporal lobe, hippocampus, cingulate gyrus, cerebellum, midbrain, pons, medulla oblongata and cervical cord were then dissected to determine propofol concentrations in these tissues by HPLC. RESULTS: The propofol concentrations in the internal carotid artery and internal jugular vein blood plasma were comparable at T30 (6.16-/+1.02 vs 6.17-/+1.00 microg/ml, P>0.05). The propofol concentration was 6.11-/+1.07 microg/g in the epithalamus, 6.14-/+0.98 microg/g in the metathalamus, 6.12-/+1.02 microg/g in the hypothalamus, 6.15-/+1.00 microg/g in the subthalamus, 6.20-/+1.03 microg/g in the frontal lobe, 6.18-/+1.02 microg/g in the parietal lobe, 6.13-/+1.00 microg/g in the temporal lobe, 6.07-/+0.99 microg/g in the hippocampus, 6.14-/+1.06 microg/g in the cingulate gyrus, 6.15-/+1.00 microg/g in the cerebellum, 6.13-/+1.05 microg/g in the midbrain, 6.18-/+1.01 microg/g in the pons, 6.15-/+0.93 microg/g in the medulla oblongata, and 6.13-/+1.00 microg/g in the cervical cord, showing no significant differences in the distributions (P>0.05). Propofol concentration in the thalamus (8.68-/+0.88 microg/g) was significantly higher than those in the other brain tissues (P<0.05). CONCLUSIONS: At the constant intravenous propofol injection rate of 70 mg.kg(-1).h(-1), plasma propofol concentration reaches equilibrium 30 min after the injection in the internal carotid artery and internal jugular vein with even distribution in the cerebral tissues in dogs, but the thalamus contains high propofol concentration.


Assuntos
Encéfalo/metabolismo , Artéria Carótida Interna/metabolismo , Veias Jugulares/metabolismo , Propofol/farmacocinética , Tálamo/metabolismo , Absorção , Anestésicos Intravenosos/sangue , Anestésicos Intravenosos/farmacocinética , Animais , Cães , Masculino , Propofol/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...