Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; : 124976, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293661

RESUMO

Iron-biochar composite is a promising catalyst in Fenton-like system for removal of organic pollutants. Nevertheless, low cycling rate of Fe(III) / Fe(II), high iron leaching and low H2O2 utilization efficiency impedes its application. Herein, a iron-based biochar (C-Fe) coated with tartaric acid (TA) was synthesized. The specific structure of inherent graphitized carbon and TA coating improved the removal efficiency of dibutyl phthalate (DBP) to 93%, promoted 2-fold increase in HO• production in H2O2 activation, improved the cycling rate of Fe(III) / Fe(II), and mitigated Fe leaching significantly. The developed HO• and 1O2 dominated Fenton-like system had an excellent pH universality and anti-interference to inorganic ions and real water matrixes. Moreover, C-Fe-TA has been shown to efficiently degrade DBP by using the dissolved oxygen in water to generate HO•. This work provided a novel insight for sustainable and efficient HO• and 1O2 generation, which motivated the development of new water treatment technology based on efficient iron-biochar catalyst.

2.
Environ Res ; 251(Pt 2): 118303, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295978

RESUMO

A novel intercalated nanocomposite of mercapto-modified cellulose/bentonite (LCS-BE-SH) was synthesized by high-speed shearing method in one step at room temperature, and was applied to remove Cd from solution and remediate Cd-contaminated soil. Results revealed that cellulose long-chain molecules have intercalated into bentonite nanolayers and interlayer spacing was increased to 1.411 nm, and grafting -SH groups improved adsorption selectivity, which enabled LCS-BE-SH to have distinct capability of Cd adsorption (qmax = 147.21 mg/g). Kinetic and thermodynamics showed that Cd adsorption onto LCS-BE-SH was well fitted by pseudo-second-order and Langmuir adsorption isotherm. Characterizations of the adsorbents revealed that synergistic effect of complexation (e.g., CdS, CdO) and precipitation (e.g., Cd(OH)2, CdCO3) mechanism played a major role in Cd removal. In soil remediation, application of LCS-BE-SH was most effective (67.31 %) in Cd immobilization compared to the control (8.85 %), which reduced exchangeable Cd from 37.03 % to 11.44 %. Meanwhile, soil pH, soil organic matter, available phosphorus, and enzyme activities (catalase, urease, and dehydrogenase) were improved LCS-BE-SH treatment. The main immobilization mechanism in soil included complexation (e.g., CdS, CdO) and precipitation (e.g., Cd(OH)2, Cd-Fe-hydroxide). Overall, this work applied a promising approach for Cd removal in aqueous and Cd remediation in soil by using an effective eco-friendly LCS-BE-SH nanocomposites.


Assuntos
Bentonita , Cádmio , Celulose , Recuperação e Remediação Ambiental , Nanocompostos , Poluentes do Solo , Bentonita/química , Cádmio/química , Nanocompostos/química , Poluentes do Solo/química , Recuperação e Remediação Ambiental/métodos , Celulose/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA