Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230786

RESUMO

The active hemorrhage surrounding the hematoma is caused by the infiltration of blood into the cerebral parenchyma through the ruptured vessel, including the compromised blood-brain barrier (BBB). This process is thought to be mainly driven by inflammation and serves as a significant pathological characteristic that contributes to the neurological deterioration observed in individuals with intracerebral hemorrhage (ICH). Heat shock protein 90 (HSP90) exhibits abnormally high expression levels in various diseases and is closely associated with the onset of inflammation. Here, we found that blocking HSP90 effectively alleviates the inflammatory damage to BBB and subsequent bleeding around the hematoma. We have observed increased HSP90 levels in the serum of patients with ICH and the perihematoma region in ICH rats. Treatment with anti-HSP90 drugs (Geldanamycin and radicicol) effectively reduced HSP90 levels, resulting in enhanced neurological outcomes, decreased hematoma volume, and prevented peripheral immune cells from adhering to the BBB and infiltrating the brain parenchyma surrounding the hematoma in ICH rats. Mechanistically, anti-HSP90 therapy alleviated BBB injury caused by ICH-induced inflammation by suppressing TLR4 signaling. The study highlights the potential of anti-HSP90 therapy in mitigating BBB disruption and hemorrhage surrounding the hematoma, providing new insights into the management of ICH by targeting HSP90.

2.
Mol Neurobiol ; 61(9): 6501-6510, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38315302

RESUMO

Early diagnosis and intervention are key to the treatment of Alzheimer's disease (AD). There is an urgent need for new biomarkers and molecular targets for the detection and treatment of early Alzheimer's pathology. Circular RNA (circRNA) is a newly discovered non-coding RNA with a special type of covalently closed single strand, with potential preventive and therapeutic applications in a variety of diseases. New studies in the field of circRNA in AD have made many exciting new discoveries in recent years, some of which have not received sufficient attention but have important research implications. This review will focus on existing studies of circRNA in AD and discuss future translational perspectives of proposed circRNA strategies for clinical application in AD.


Assuntos
Doença de Alzheimer , Biomarcadores , RNA Circular , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Humanos , RNA Circular/genética , Animais , Biomarcadores/metabolismo , RNA/genética , RNA/metabolismo
3.
Aging (Albany NY) ; 15(21): 12296-12313, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37934582

RESUMO

Glioma remains the most frequent malignancy of the central nervous system. Recently, necroptosis has been identified as a cell death process that mediates the proliferation and development of tumor cells. LncRNAs play a key role in the diagnosis and treatment of various diseases. However, the impact that necrosis-related lncRNAs (NRLs) have on glioma remains unclear. In our studies, we selected 9 NRLs to construct a prognostic model. Meanwhile, we assessed the survival curves of these 9 NRLs. Our findings found ADGRA1-AS1 and WAC-AS1 were protective lncRNAs, while MIR210HG, LINC01503, CRNDE, HOXC-AS1, ZIM2-AS1, MIR22HG and PLBD1-AS1 were risk lncRNAs. Specifically, 12 immune cells, 25 immune-correlated pathways, and TME score were differentially expressed in the both risk groups. Additionally, the study predicted and validated the necroptosis-related lncRNA CRNDE/miR-23b-3p/IDH1 axis. CRNDE was strongly expressed in glioma specimens and several cell lines. Inhibiting CRNDE resulted in a substantial reduction in the proliferation and migration of U-118MG and U251 cells. Furthermore, the study predicted that CRNDE may exhibit oncogenic features by adsorbing miR-23b-3p and positively regulating IDH1 expression. Overall, the study constructed a prognostic model in glioma, and predicted a lncRNA CRNDE/miR-23b-3p/IDH1 axis, which could potentially be useful for gene therapy of glioma.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Prognóstico , Necroptose/genética , Linhagem Celular Tumoral , Glioma/genética , Glioma/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Isocitrato Desidrogenase/genética
4.
Aging (Albany NY) ; 15(19): 10389-10406, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37801482

RESUMO

Alzheimer's disease (AD) is a neurodegenerative condition causing cognitive decline. Oxidative stress (OS) is believed to contribute to neuronal death and dysfunction in AD. We conducted a study to identify differentially expressed OS-related genes (DEOSGs) through bioinformatics analysis and experimental validation, aiming to develop a diagnostic model for AD. We analyzed the GSE33000 dataset to identify OS regulator expression profiles and create molecular clusters (C1 and C2) associated with immune cell infiltration using 310 AD samples. Cluster analysis revealed significant heterogeneity in immune infiltration. The 'WGCNA' algorithm identified cluster-specific and disease-specific differentially expressed genes (DGEs). Four machine learning models (random forest (RF), support vector machine (SVM), generalized linear model (GLM) and extreme gradient boosting (XGB)) were compared, with GLM performing the best (AUC = 0.812). Five DEOSGs (NFKBIA, PLCE1, CLIC1, SLCO4A1, TRAF3IP2) were identified based on the GLM model. AD subtype prediction accuracy was validated using nomograms and calibration curves. External datasets (GSE122063 and GSE106241) confirmed the expression levels and clinical significance of important genes. Experimental validation through RT-qPCR showed increased expression of NFKBIA, CLIC1, SLCO4A1, TRAF3IP2, and decreased expression of PLCE1 in the temporal cortex of AD mice. This study provides insights for AD research and treatment, particularly focusing on the five model-related DEOSGs.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Algoritmos , Calibragem , Morte Celular , Biomarcadores
5.
Int Immunopharmacol ; 123: 110698, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517381

RESUMO

Intracerebral hemorrhage (ICH) can result in secondary brain injury due to inflammation and breakdown of the blood-brain barrier (BBB), which are closely associated with patient prognosis. The potential of the heat shock protein 90 (Hsp90) inhibitor 17-DMAG in promoting neuroprotection has been observed in certain vascular diseases. However, the precise role of 17-DMAG treatment in ICH is not yet fully understood. In this study, we found that treatment with 17-DMAG (5 mg/kg) effectively reduced hematoma expansion and resulted in improved neurological outcomes. Meanwhile, the injection of 17-DMAG had a positive effect on reducing BBB disruption in rats with ICH. This effect was achieved by increasing the levels of BBB tight junction proteins (TJPs) such as zo-1, claudin-5, and occludin. As a result, the leakage of EB extravasation, brain edema and IgG in the peri-hematoma tissue were reduced. Furthermore, the injection of 17-DMAG decreased the infiltration of neutrophils into the brain tissues surrounding the hematoma in ICH rats and also reduced the production of proinflammatory cytokines IL-6 and TNF-α. Next, we used integrative mass spectrometry (MS) and molecular docking analysis to confirm that sex determining region Y-box protein 5 (SOX5) is a potential direct target of 17-DMAG in ICH. SOX5 encodes a positive regulator of the PI3K/Akt axis, and treatment with 17-DMAG resulted in a noticeable increase in SOX5 accumulation. To further investigate the role of SOX5, we employed virus-regulated SOX5 silencing and found that suppressing SOX5 blocked the ability of 17-DMAG to suppress neutrophil trafficking. Additionally, silencing SOX5 blocked the protective effects of 17-DMAG on the BBB by inhibiting PI3K, p-Akt, and BBB TJPs levels, which led to an increase in EB and IgG leakage in the peri-hematoma tissue after ICH. Similarly, when SOX5 was knocked down, the protective effects of 17-DMAG were lost. Overall, the results of our study indicate that the injection of 17-DMAG has the potential to mitigate neuroinflammation and prevent the disruption of the BBB caused by ICH, resulting in improved neurological outcomes in rats. These positive effects are attributed to the regulation of SOX5 and activation of the PI3K/Akt pathway. These findings highlight the possibility of targeting SOX5 and the PI3K/Akt pathway as a novel therapeutic approach for ICH.


Assuntos
Barreira Hematoencefálica , Hemorragia Cerebral , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Hematoma , Imunoglobulina G/uso terapêutico , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição SOXD/metabolismo
6.
Oxid Med Cell Longev ; 2022: 8122532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996379

RESUMO

Currently, Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are widely prevalent in the elderly population, and accumulating evidence implies a strong link between them. For example, patients with T2DM have a higher risk of developing neurocognitive disorders, including AD, but the exact mechanisms are still unclear. This time, by combining bioinformatics analysis and in vivo experimental validation, we attempted to find a common biological link between AD and T2DM. We firstly downloaded the gene expression profiling (AD: GSE122063; T2DM: GSE161355) derived from the temporal cortex. To find the associations, differentially expressed genes (DEGs) of the two datasets were filtered and intersected. Based on them, enrichment analysis was carried out, and the least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify the specific genes. After verifying in the external dataset and in the samples from the AD and type 2 diabetes animals, the shared targets of the two diseases were finally determined. Based on them, the ceRNA networks were constructed. Besides, the logistic regression and single-sample gene set enrichment analysis (ssGSEA) were performed. As a result, 62 DEGs were totally identified between AD and T2DM, and the enrichment analysis indicated that they were much related to the function of synaptic vesicle and MAPK signaling pathway. Based on the evidence from external dataset and RT-qPCR, CARTPT, EPHA5, and SERPINA3 were identified as the marker genes in both diseases, and their clinical significance and biological functions were further analyzed. In conclusion, discovering and exploring the marker genes that are dysregulated in both 2 diseases could help us better comprehend the intrinsic relationship between T2DM and AD, which may inspire us to develop new strategies for facing the dilemmas of clinical or basic research in cognitive dysfunction.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Máquina de Vetores de Suporte
7.
Cell Prolif ; 53(1): e12698, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31588640

RESUMO

Advances in transcriptome sequencing have revealed that the genome fraction largely encodes for thousands of non-coding RNAs. Long non-coding RNAs (lncRNAs), which are a class of non-protein-coding RNAs longer than approximately 200 nucleotides in length, are emerging as key epigenetic regulators of gene expression recently. Intensive studies have characterized their crucial roles in cutaneous biology and diseases. In this review, we address the promotive or suppressive effects of lncRNAs on cutaneous physiological processes. Then, we focus on the pathogenic role of dysfunctional lncRNAs in a variety of proliferative skin diseases. These evidences suggest that lncRNAs have indispensable roles in the processes of skin biology. Additionally, lncRNAs might be promising biomarkers and therapeutic targets for cutaneous disorders.


Assuntos
Proliferação de Células , RNA Longo não Codificante/metabolismo , Dermatopatias/metabolismo , Pele/metabolismo , Animais , Humanos , Pele/patologia , Dermatopatias/patologia
8.
Front Immunol ; 9: 1210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899748

RESUMO

Psoriasis, which is a common chronic inflammatory skin disease, endangers human health and brings about a major economic burden worldwide. To date, treatments for psoriasis remain unsatisfied because of their clinical limitations and various side effects. Thus, developing a safer and more effective therapy for psoriasis is compelling. Previous studies have explicitly shown that psoriasis is an autoimmune disease that is predominantly mediated by T helper 17 (Th17) cells, which express high levels of interleukin-17 (IL-17) in response to interleukin-23 (IL-23). The discovery of the IL-23-Th17-IL-17 axis in the development of psoriasis has led to the paradigm shift of understanding pathogenesis of psoriasis. Although anti-IL-17 antibodies show marked clinical efficacy in treating psoriasis, compared with antibodies targeting IL-17A or IL-17R alone, targeting Th17 cells themselves may have a maximal benefit by affecting multiple proinflammatory cytokines, including IL-17A, IL-17F, IL-22, and granulocyte-macrophage colony-stimulating factor, which likely act synergistically to drive skin inflammation in psoriasis. In this review, we mainly focus on the critical role of Th17 cells in the pathogenesis of psoriasis. Especially, we explore the small molecules that target retinoid-related orphan receptor γt (RORγt), a vital transcription factor for Th17 cells. Given that RORγt is the lineage-defining transcription factor for Th17 cell differentiation, targeting RORγt via small molecular inverse agonists may be a promising strategy for the treatment of Th17-mediated psoriasis.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Psoríase/etiologia , Psoríase/metabolismo , Animais , Autoimunidade/efeitos dos fármacos , Autoimunidade/genética , Biomarcadores , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Desenvolvimento de Medicamentos , Humanos , Ligantes , Terapia de Alvo Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Psoríase/tratamento farmacológico , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA