Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344295

RESUMO

Intercropping is an efficient land use and sustainable agricultural practice widely adopted worldwide. However, how intercropping influences the structure and function of soil bacterial communities is not fully understood. Here, the effects of five cropping systems (sole sorghum, sole millet, sole peanut, sorghum/peanut intercropping, and millet/peanut intercropping) on soil bacterial community structure and function were investigated using Illumina MiSeq sequencing. The results showed that integrating peanut into intercropping systems increased soil available nitrogen (AN) and total nitrogen (TN) content. The alpha diversity index, including Shannon and Chao1 indices, did not differ between the five cropping systems. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) illustrated a distinct separation in soil microbial communities among five cropping systems. Bacterial phyla, including Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, were dominant across all cropping systems. Sorghum/peanut intercropping enhanced the relative abundance of phyla Actinobacteriota and Chloroflexi compared to the corresponding monocultures. Millet/peanut intercropping increased the relative abundance of Proteobacteria, Acidobacteriota, and Nitrospirota. The redundancy analysis (RDA) indicated that bacterial community structures were primarily shaped by soil organic carbon (SOC). The land equivalent ratio (LER) values for the two intercropping systems were all greater than one. Partial least squares path modeling analysis (PLS-PM) showed that soil bacterial community had a direct effect on yield and indirectly affected yield by altering soil properties. Our findings demonstrated that different intercropping systems formed different bacterial community structures despite sharing the same climate, reflecting changes in soil ecosystems caused by interspecific interactions. These results will provide a theoretical basis for understanding the microbial communities of peanut-based intercropping and guide agricultural practice.


Assuntos
Chloroflexi , Microbiota , Solo/química , Arachis/microbiologia , Carbono , Microbiologia do Solo , Bactérias/genética , Acidobacteria , Proteobactérias , Nitrogênio
2.
Front Plant Sci ; 14: 1266969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078119

RESUMO

In maize/peanut intercropping systems, shade from maize is a major factor in peanut yield reduction. Reasonable redundant organ removal of maize plants could alleviate this problem and improve intercropped peanut yields. We studied the influences of organ removal of maize on peanut canopy photosynthetic capacity, dry matter accumulation and yield in maize/peanut intercropping systems in 2021 and 2022. Five organ-removal treatments were performed on maize plants to ameliorate the light environments in the peanut canopy. Treatments consisted of removal of the tassel only (T1), the tassel with top two leaves (T2), the tassel with top four leaves (T3), the tassel with top six leaves (T4), the leaves below the second leaf below the ear (T5), with no removal as control (T0). The results showed that organ-removal treatment (T4) significantly improved the photosynthetically active radiation (PAR, 49.5%) of intercropped peanut canopy. It improved dry matter accumulation by increasing the canopy photosynthetic capacity (canopy apparent photosynthetic rate (CAP), leaf area index (LAI), and specific leaf area (SLA)), ultimately contributing to peanut yield by increasing pod number per plant. Also, the above results were verified by structural equation modeling. The yield of intercropped peanut reached the highest value at T4. At the level of intercropping systems, the land equivalent ratio (LER) peaked at T2 (1.56, averaged over the two years), suggesting that peanut and maize can coexist more harmoniously under T2 treatment. The T2 treatment increased peanut yield by an average of 7.1% over two years and increased maize yield by 4.7% compared to the T0 treatment. The present study suggests that this may be an effective cultivation measure to mitigate intercropping shade stress in terms of adaptive changes in intercropped peanut under maize organ removal conditions, providing a theoretical basis for intercropped peanut yield increase.

3.
Huan Jing Ke Xue ; 44(8): 4575-4584, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694651

RESUMO

The objective of this study was to explore the microecological variability in farmland soil fertility in response to millet-peanut intercropping patterns by clarifying the effects of millet-peanut 4:4 intercropping on soil bacterial community structure and its diversity, as well as to provide a reference basis for promoting ecological restoration and arable land quality improvement in the lower Yellow River farmland. The Illumina MiSeq high-throughput sequencing technology and QIIME 2 platform were used to analyze the differences in bacterial community composition and their influencing factors in five soils[sole millet (SM), sole peanut (SP), intercropping millet (IM), intercropping peanut (IP), and millet-peanut intercropping (MP)] and to predict their ecological functions. The results showed that the α-diversity of intercropping soil bacterial communities differed from that of monocropping, though not significantly, whereas the ß-diversity was significantly different (P<0.05). A total of 7081 ASVs were obtained from all soil samples, classified into 34 phyla, 109 orders, 256 class, 396 families, 710 genera, and 1409 species, of which 727 ASVs were shared, accounting for 24.5% to 27.8% in five soil species. The bacterial communities of millet-peanut intercropping and its monocropping soils were similar in phylum composition but varied in relative abundance. All five soils were dominated by the Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, with a relative abundance of 79.40%-81.33%. Soil organic carbon and alkaline nitrogen were the most important factors causing differences in the structures of the five soil bacterial communities at the phylum and genus levels, respectively. The PICRUSt functional prediction revealed that the relative abundance of primary functional metabolism was the largest (78.9%-79.3%), and the relative abundance of secondary functional exogenous biodegradation and metabolism fluctuated the most (CV=3.782%). In terms of the BugBase phenotype, the relative abundance of oxidative stress-tolerant bacteria increased in intercropping millet or peanut soils compared to that in the corresponding monocultures and significantly increased in intercropping millet soils compared to that in sole millet (P<0.05). Oxidative stress-tolerant, Gram-positive, and aerobic phenotypes were highly significantly positively correlated with each other (P<0.01), and all three showed highly significant negative correlations with potential pathogenicity and Gram-negative and anaerobic phenotypes (P<0.01). This showed that millet-peanut intercropping resulted in differences in soil bacterial community diversity, abundance, and metabolic functions and the possibility of reducing the occurrence of potential soil diseases. It can be used to regulate the soil microbiological environment to promote ecological restoration and sustainable development of farmland in the lower Yellow River.


Assuntos
Arachis , Milhetes , Humanos , Carbono , Fazendas , Rios , Solo
4.
Ying Yong Sheng Tai Xue Bao ; 27(2): 539-48, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-27396129

RESUMO

The Daycent model was calibrated and validated using measured crop yield and soil organic carbon (SOC) as double assessment standards based on the experimental data from three long-term experiments (i.e. Zhengzhou site in Henan Province, Yucheng site in Shandong Province and Quzhou site in Hebei Province) in North China. Results showed that the build-up parameters simulated the long-term dynamic changes of crop yields and SOC very well, indicating Daycent model could project the dynamic changes of crop yield and SOC soundly. After calibration and validation, Daycent model was used to simulate the changes of SOC under future climate scenarios (representative concentration pathway 4.5, RCP 4.5) with four different management practices (chemical fertilizer, NPK; chemical fertilizer + organic manure, MNPK; straw incorporation, SNPK; no-tillage +straw incorporation, NT) at the three sites. At Zhengzhou site, the change of SOC was highest for MNPK treatment during the period of 2001-2050 (1.7%) and followed by SNPK (1.3%) and NPK (0.8%) in terms of annual relative increase rate (ARIR), indicating long-term amendment of organic manure could effectively increase SOC for light loam soil with irrigation condition. At Yucheng site, the increase of SOC (ARIR) under MNPK treatment (0.4%) was higher than under NPK treatment (0.3%). In addition, the increase of SOC was very low under all treatments at this site, probably due to light soil salinization. At Quzhou site, the increase of SOC (ARIR) under NT treatment was 1.3%, higher than those under SNPK treatment (0.7%) and NPK treatment (0.4%), indicating NT was more effective for SOC increase in this area. We concluded that no-tillage with straw incorporation is the optimized management practice to increase SOC in North China Plain due to mild climate, sound irrigation and available mechanical equipment for straw processing and no-tillage operation.


Assuntos
Agricultura/métodos , Carbono/análise , Fertilizantes , Modelos Teóricos , Solo/química , China , Clima , Esterco
5.
Int J Biometeorol ; 60(5): 727-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26433368

RESUMO

The global atmospheric CO(2) concentration is currently (2012) 393.1 µmol mol(-1), an increase of approximately 42 % over pre-industrial levels. In order to understand the responses of metabolic enzymes to elevated CO(2) concentrations, an experiment was conducted using the Free Air CO(2) Enrichment (FACE )system. Two conventional japonica rice varieties (Oryza sativa L. ssp. japonica) grown in North China, Songjing 9 and Daohuaxiang 2, were used in this study. The activities of ADPG pyrophosphorylase, soluble and granule-bound starch synthases, and soluble and granule-bound starch branching enzymes were measured in rice grains, and the effects of elevated CO(2) on the amylose and protein contents of the grains were analyzed. The results showed that elevated CO(2) levels significantly increased the activity of ADPG pyrophosphorylase at day 8, 24, and 40 after flower, with maximum increases of 56.67 % for Songjing 9 and 21.31 % for Daohuaxiang 2. Similarly, the activities of starch synthesis enzymes increased significantly from the day 24 after flower to the day 40 after flower, with maximum increases of 36.81 % for Songjing 9 and 66.67 % for Daohuaxiang 2 in soluble starch synthase (SSS), and 25.00 % for Songjing 9 and 36.44 % for Daohuaxiang 2 in granule-bound starch synthase (GBSS), respectively. The elevated CO(2) concentration significantly increased the activity of soluble starch branching enzyme (SSBE) at day 16, 32, and 40 after flower, and also significantly increased the activity of granule-bound starch branching enzyme (GBSBE) at day 8, 32, and 40 after flower. The elevated CO(2) concentration increased the peak values of enzyme activity, and the timing of the activity peaks for SSS and GBSBE were earlier in Songjing 9 than in Daohuaxiang 2. There were obvious differences in developmental stages between the two varieties of rice, which indicated that the elevated CO(2) concentration increased enzyme activity expression and starch synthesis, affecting the final contents of starch and protein in the rice grains. Our results will provide a foundation for understanding the physiological mechanisms of rice yield under elevated atmospheric CO(2) concentrations.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Dióxido de Carbono/farmacologia , Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/efeitos dos fármacos , Sintase do Amido/metabolismo , Amilose/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo
6.
J Environ Manage ; 144: 316-21, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24991790

RESUMO

Nitrous oxide (N2O) is one of the most important greenhouse gases emitted from fertilized agricultural soils. Vegetable fields, mostly managed under intensive mode with higher rate nitrogen application, frequent irrigation, and multiple planting-harvest cycles, does contribute to national GHG inventory greatly due to the increasing planting area in China. N2O emissions from four different fields - a maize field (maize), a newly established open-ground vegetable field converted from a maize field four years earlier (OV4), an established open-ground vegetable field converted from a maize field more than 20 years ago (OV20), and an established sunlight heated greenhouse vegetable field converted from a maize field more than 20 years ago (GV20) with four different fertilization treatments for the OV4 field were measured using the closed chamber method between March 15th, 2012 and March 14th, 2013 in suburban area of Beijing, North China Plain. Results showed that the annual N2O emissions from vegetable fields were 3.1-4.6 times higher than the typical maize field. All the N2O emission peaks were occurred after fertilization and the fertilization associated emissions accounted for 81.1% (ranging from 77.0% to 87.2%) of the annual N2O emission with 22.2% time duration in the whole year for vegetable fields. Both the occurrence data and duration of N2O emission peaks were associated with N input type (chemical or manure) and the application rate. The N2O emission peaks appeared earlier (on the 3rd day after application) and lasted shorter when only chemical N was applied; while they appeared later (on the 7th to 10th day after application) and lasted longer when the combination of manure and chemical N were applied. The magnitudes of N2O emission peaks increased when the N application rate was higher. Dicyandiamide (DCD) decreased N2O emissions by 30.1% and 21.1% in the spring cucumber and autumn cabbage seasons respectively (averaged of 24.7% over the whole year). Calculations showed that it is critical to estimate the emission factor (EF) by N type in order to decrease the uncertainty of regional N2O emissions when using EF as calculation method. EFs were 0.20% and 0.42% for manure N in the cucumber and cabbage seasons respectively; and were 0.55-1.30% and 0.8-1.59% for chemical N in the cucumber and cabbage seasons respectively.


Assuntos
Agricultura , Poluentes Atmosféricos/análise , Produtos Agrícolas/química , Monitoramento Ambiental , Óxido Nitroso/análise , Verduras/química , China
7.
Ying Yong Sheng Tai Xue Bao ; 18(3): 659-64, 2007 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-17552210

RESUMO

Crop grain quality is mainly depended on variety's genetic characteristics and environmental conditions, while elevated CO2 concentration in atmosphere, one of the main factors resulting in global climate change, would have a significant effect on crop grain quality. In this paper, the research progress on the effects of CO2 enrichment on rice and wheat grain quality was summarized from the aspects of protein and nitrogen contents, trace elements, and other characters, emphasized the necessity and urgency of the study in this field, and pointed out the key directions and contents of further study, i.e., (a) direct effects of CO2 enrichment on rice and wheat grain quality and their differences for different varieties, (b) integrated effects of CO2 enrichment and other climate factors on rice and wheat grain quality and their quantitative indices, (c) action mechanisms of CO2 enrichment and other climate factors on rice and wheat grain quality formation, (d) longterm directions and strategies of rice and wheat breeding in quality improvement to adapt climate change, (e) integrated planting technology systems in quality improvement for adapting climate change, and (f) application of molecule-marker and gene-transfer in rice and wheat breeding for quality improvement.


Assuntos
Dióxido de Carbono/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/análise , Triticum/crescimento & desenvolvimento , Ar/análise , Efeito Estufa , Nitrogênio/análise , Oryza/metabolismo , Controle de Qualidade , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...