Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Med Phys ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984805

RESUMO

BACKGROUND: Positron emission tomography (PET) has been investigated for its ability to reconstruct proton-induced positron activity distributions in proton therapy. This technique holds potential for range verification in clinical practice. Recently, deep learning-based dose estimation from positron activity distributions shows promise for in vivo proton dose monitoring and guided proton therapy. PURPOSE: This study evaluates the effectiveness of three classical neural network models, recurrent neural network (RNN), U-Net, and Transformer, for proton dose estimating. It also investigates the characteristics of these models, providing valuable insights for selecting the appropriate model in clinical practice. METHODS: Proton dose calculations for spot beams were simulated using Geant4. Computed tomography (CT) images from four head cases were utilized, with three for training neural networks and the remaining one for testing. The neural networks were trained with one-dimensional (1D) positron activity distributions as inputs and generated 1D dose distributions as outputs. The impact of the number of training samples on the networks was examined, and their dose prediction performance in both homogeneous brain and heterogeneous nasopharynx sites was evaluated. Additionally, the effect of positron activity distribution uncertainty on dose prediction performance was investigated. To quantitatively evaluate the models, mean relative error (MRE) and absolute range error (ARE) were used as evaluation metrics. RESULTS: The U-Net exhibited a notable advantage in range verification with a smaller number of training samples, achieving approximately 75% of AREs below 0.5 mm using only 500 training samples. The networks performed better in the homogeneous brain site compared to the heterogeneous nasopharyngeal site. In the homogeneous brain site, all networks exhibited small AREs, with approximately 90% of the AREs below 0.5 mm. The Transformer exhibited the best overall dose distribution prediction, with approximately 92% of MREs below 3%. In the heterogeneous nasopharyngeal site, all networks demonstrated acceptable AREs, with approximately 88% of AREs below 3 mm. The Transformer maintained the best overall dose distribution prediction, with approximately 85% of MREs below 5%. The performance of all three networks in dose prediction declined as the uncertainty of positron activity distribution increased, and the Transformer consistently outperformed the other networks in all cases. CONCLUSIONS: Both the U-Net and the Transformer have certain advantages in the proton dose estimation task. The U-Net proves well suited for range verification with a small training sample size, while the Transformer outperforms others at dose-guided proton therapy.

2.
Phys Med Biol ; 69(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776949

RESUMO

Objective. In-beam positron emission tomography (PET) is a promising technology for real-time monitoring of proton therapy. Random coincidences between prompt radiation events and positron annihilation photon pairs can deteriorate imaging quality during beam-on operation. This study aimed to improve the PET image quality by filtering out the prompt radiation events.Approach. We investigated a prompt radiation event filtering method based on the accelerator radio frequency phase and assessed its performance using various prompt gamma energy thresholds. An in-beam PET prototype was used to acquire the data when the 70 MeV proton beam irradiated a water phantom and a mouse. The signal-to-background ratio (SBR) indicator was utilized to evaluate the quality of the PET reconstruction image.Main results. The selection of the prompt gamma energy threshold will affect the quality of the reconstructed image. Using the optimal energy threshold of 580 keV can obtain a SBR of 1.6 times for the water phantom radiation experiment and 2.0 times for the mouse radiation experiment compared to those without background removal, respectively.Significance. Our results show that using this optimal threshold can reduce the prompt radiation events, enhancing the SBR of the reconstructed image. This advancement contributes to more accurate real-time range verification in subsequent steps.


Assuntos
Imagens de Fantasmas , Tomografia por Emissão de Pósitrons , Terapia com Prótons , Terapia com Prótons/métodos , Camundongos , Animais , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Água
3.
IEEE Trans Radiat Plasma Med Sci ; 8(3): 269-276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38654812

RESUMO

We investigate a highly multiplexing readout for depth-of-interaction (DOI) and time-of-flight PET detector consisting of an N×N crystals whose light outputs at the front and back ends are detected by using silicon photomultipliers (SiPM). The front N×N SiPM array is read by using a stripline (SL) configured to support discrimination of the row position of the signal-producing crystal. The back N×N SiPM array is similarly read by an SL for column discrimination. Hence, the detector has only four outputs. We built 4×4 and 8×8 detector modules (DM) by using 3.0×3.0×20 mm3 lutetium-yttrium oxyorthosilicates. The outputs were sampled and processed offline. For both DMs, crystal discrimination was successful. For the 4×4 DM, we obtained an average energy resolution (ER) of 14.1%, an average DOI resolution of 2.5 mm, a non DOI-corrected coincidence resolving time (CRT), measured in coincidence with a single-pixel reference detector, of about 495 ps. For the 8×8 DM, the average ER, average DOI resolution and average CRT were 16.4%, 2.9 mm, and 641 ps, respectively. We identified the intercrystal scattering as a probable cause for the CRT deterioration when the DM was increased from 4×4 to 8×8.

4.
Phys Med Biol ; 69(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100841

RESUMO

Objective.Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.Approach.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.9 × 3.9 × 20 mm3lutetium-yttrium oxyorthosilicate crystal coupled with a 3.93 × 3.93 mm2SiPM. The SiPMs analog signals are individually digitized using the multi-voltage threshold (MVT) technology, employing a 1:1:1 coupling configuration.Main results.The brain PET system exhibits a TOF resolution of 249 ps at 5.3 kBq ml-1, an average sensitivity of 22.1 cps kBq-1, and a noise equivalent count rate (NECR) peak of 150.9 kcps at 8.36 kBq ml-1. Furthermore, the mini-Derenzo phantom study demonstrated the system's ability to distinguish rods with a diameter of 2.0 mm. Moreover, incorporating the TOF reconstruction algorithm in an image quality phantom study optimizes the background variability, resulting in reductions ranging from 44% (37 mm) to 75% (10 mm) with comparable contrast. In the human brain imaging study, the SNR improved by a factor of 1.7 with the inclusion of TOF, increasing from 27.07 to 46.05. Time-dynamic human brain imaging was performed, showing the distinctive traits of cortex and thalamus uptake, as well as of the arterial and venous flow with 2 s per time frame.Significance.The system exhibited a good TOF capability, which is coupled with the high sensitivity and count rate performance based on the MVT digital sampling technique. The developed TOF-enabled brain PET system opens the possibility of precise kinetic brain PET imaging, towards new quantitative predictive brain diagnostics.


Assuntos
Encéfalo , Lutécio , Tomografia por Emissão de Pósitrons , Silicatos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas
5.
Med Phys ; 51(2): 1034-1046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103259

RESUMO

BACKGROUND: Computed tomography (CT)-based positron emission tomography (PET) attenuation correction (AC) is a commonly used method in PET AC. However, the CT truncation caused by the subject's limbs outside the CT field-of-view (FOV) leads to errors in PET AC. PURPOSE: In order to enhance the quantitative accuracy of PET imaging in the all-digital DigitMI 930 PET/CT system, we assessed the impact of FOV truncation on its image quality and investigated the effectiveness of geometric shape-based FOV extension algorithms in this system. METHODS: We implemented two geometric shape-based FOV extension algorithms. By setting the data from different numbers of detector channels on either side of the sinogram to zero, we simulated various levels of truncation. Specific regions of interest (ROI) were selected, and the mean values of these ROIs were calculated to visually compare the differences between truncated CT, CT extended using the FOV extension algorithms, and the original CT. Furthermore, we conducted statistical analyses on the mean and standard deviation of residual maps between truncated/extended CT and the original CT at different levels of truncation. Subsequently, similar data processing was applied to PET images corrected using original CT and those corrected using simulated truncated and extended CT images. This allowed us to evaluate the influence of FOV truncation on the images produced by the DigitMI 930 PET/CT system and assess the effectiveness of the FOV extension algorithms. RESULTS: Truncation caused bright artifacts at the CT FOV edge and a slight increase in pixel values within the FOV. When using truncated CT data for PET AC, the PET activity outside the CT FOV decreased, while the extension algorithm effectively reduced these effects. Patient data showed that the activity within the CT FOV decreased by 60% in the truncated image compared to the base image, but this number could be reduced to at least 17.3% after extension. CONCLUSION: The two geometric shape-based algorithms effectively eliminate CT truncation artifacts and restore the true distribution of CT shape and PET emission data outside the FOV in the all-digital DigitMI 930 PET/CT system. These two algorithms can be used as basic solutions for CT FOV extension in all-digital PET/CT systems.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas , Artefatos , Processamento de Imagem Assistida por Computador/métodos
6.
Biomed Phys Eng Express ; 9(5)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37567155

RESUMO

Objective. Much recent attention on positron emission tomography (PET) is the development of time-of-flight (TOF) systems with ever-improving coincidence time resolution (CTR). This is because, when all other factors remain the same, a better CTR leads to images of better statistics and effectively increases the sensitivity of the system. However, detector designs that aggressively improve the CTR often compromise the detection efficiency (DE) and offset the benefit gained. Under this circumstance, in developing a TOF PET system it may be beneficial to employ heterogeneous detector groups to balance the overall CTR and DE of the system. In this study, we examine the potential value of this system design strategy by considering two-dimensional systems that assume several representative ways of mixing two detector groups.Approach. The study is based on computer simulation and specifically considers medium time-resolution (MTR) detectors that have a 528 ps CTR and high time-resolution (HTR) detectors that have a 100 ps CTR and a DE that is 0.7 times that of the MTR detector. We examine contrast recovery, noise, and subjective quality of the resulting images under various ways of mixing the MTR and HTR detectors.Main results. With respect to the traditional configuration that adopts only the HTR detectors, symmetric heterogeneous configurations may offer comparable or better images while using considerably fewer HTRs. On the other hand, asymmetric heterogeneous configurations may allow the use of only a few HTRs for improving image quality locally.Significance. This study demonstrates the value of the proposed system-level design strategy of using heterogeneous detector groups for achieving high effective system sensitivity by factoring into the tradeoff between the CTR and DE of the detector.


Assuntos
Fótons , Tomografia por Emissão de Pósitrons , Simulação por Computador , Tomografia por Emissão de Pósitrons/métodos
7.
Comput Methods Programs Biomed ; 240: 107703, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531688

RESUMO

BACKGROUND AND OBJECTIVE: For positron emission tomography (PET) scanners with depth-of-interaction (DOI) measurement, the DOI rebinning method that utilizes DOI information to process the projection data is critical to image quality. Current DOI rebinning methods map coincidence events onto the rebinned sinogram based on the correlation of lines of response (LOR). This study aims to incorporate prior radioactivity distribution of the imaging object into DOI rebinning to obtain better image quality. METHODS: A DOI rebinning method based on both geometric and activity weights was proposed to assign coincidence events to the rebinned sinogram defined by a virtual ring. The geometric weights, representing the correlation between LORs, were calculated based on the areas of intersection. The activity weights, reflecting the activity distribution of the imaging object, were derived from the previous reconstructed image. RESULTS: Monte Carlo simulation data from four phantoms, including the image quality phantom, Derenzo phantom, and two rat-like ROBY phantoms, was used to evaluate the proposed method. The recovery coefficient (RC), contrast recovery coefficient (CRC), structural similarity index measure (SSIM), and peak signal-to-noise ratio (PSNR) were used as image quality metrics. Compared to other DOI rebinning methods, the proposed method achieved the highest RC (maximum improvement of 32%) and CRC at the same noise level and was also optimal in terms of the SSIM and PSNR. Meanwhile, incorporating the prior activity distribution into DOI rebinning also improved the image reconstruction speed. CONCLUSIONS: This work developed a new DOI rebinning method combining the correlation of LORs with the prior activity distribution, achieving relatively optimal image quality and reconstruction speed. Furthermore, it still needs to be evaluated on the actual equipment.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Animais , Ratos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Tomografia por Emissão de Pósitrons/métodos , Simulação por Computador , Imagens de Fantasmas
8.
Br J Radiol ; 96(1151): 20221112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37195026

RESUMO

OBJECTIVE: This work aimed to explore the utility of CT radiomics with machine learning for distinguishing the pancreatic lesions prone to non-diagnostic ultrasound-guided fine-needle aspiration (EUS-FNA). METHODS: 498 patients with pancreatic EUS-FNA were retrospectively reviewed [Development cohort: 147 pancreatic ductal adenocarcinoma (PDAC); Validation cohort: 37 PDAC]. Pancreatic lesions not PDAC were also tested exploratively. Radiomics extracted from contrast-enhanced CT was integrated with deep neural networks (DNN) after dimension reduction. The receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were performed for model evaluation. And, the explainability of the DNN model was analyzed by integrated gradients. RESULTS: The DNN model was effective in distinguishing PDAC lesions prone to non-diagnostic EUS-FNA (Development cohort: AUC = 0.821, 95% CI: 0.742-0.900; Validation cohort: AUC = 0.745, 95% CI: 0.534-0.956). In all cohorts, the DNN model showed better utility than the logistic model based on traditional lesion characteristics with NRI >0 (p < 0.05). And, the DNN model had net benefits of 21.6% at the risk threshold of 0.60 in the validation cohort. As for the model explainability, gray-level co-occurrence matrix (GLCM) features contributed the most averagely and the first-order features were the most important in the sum attribution. CONCLUSION: The CT radiomics-based DNN model can be a useful auxiliary tool for distinguishing the pancreatic lesions prone to nondiagnostic EUS-FNA and provide alerts for endoscopists preoperatively to reduce unnecessary EUS-FNA. ADVANCES IN KNOWLEDGE: This is the first investigation into the utility of CT radiomics-based machine learning in avoiding non-diagnostic EUS-FNA for patients with pancreatic masses and providing potential pre-operative assistance for endoscopists.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Estudos Retrospectivos , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico por imagem , Neoplasias Pancreáticas
9.
Eur J Radiol ; 164: 110857, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172441

RESUMO

PURPOSE: To develop CT-based radiomics models for distinguishing between resectable PDAC and mass-forming pancreatitis (MFP) and to provide a non-invasive tool for cases of equivocal imaging findings with EUS-FNA needed. METHODS: A total of 201 patients with resectable PDAC and 54 patients with MFP were included. Development cohort: patients without preoperative EUS-FNA (175 PDAC cases, 38 MFP cases); validation cohort: patients with EUS-FNA (26 PDAC cases, 16 MFP cases). Two radiomic signatures (LASSOscore, PCAscore) were developed based on the LASSO model and principal component analysis. LASSOCli and PCACli prediction models were established by combining clinical features with CT radiomic features. ROC analysis and decision curve analysis (DCA) were performed to evaluate the utility of the model versus EUS-FNA in the validation cohort. RESULTS: In the validation cohort, the radiomic signatures (LASSOscore, PCAscore) were both effective in distinguishing between resectable PDAC and MFP (AUCLASSO = 0.743, 95% CI: 0.590-0.896; AUCPCA = 0.788, 95% CI: 0.639-0.938) and improved the diagnostic accuracy of the baseline onlyCli model (AUConlyCli = 0.760, 95% CI: 0.614-0.960) after combination with variables including age, CA19-9, and the double-duct sign (AUCPCACli = 0.880, 95% CI: 0.776-0.983; AUCLASSOCli = 0.825, 95% CI: 0.694-0.955). The PCACli model showed comparable performance to FNA (AUCFNA = 0.810, 95% CI: 0.685-0.935). In DCA, the net benefit of the PCACli model was superior to that of EUS-FNA, avoiding biopsies in 70 per 1000 patients at a risk threshold of 35%. CONCLUSIONS: The PCACli model showed comparable performance with EUS-FNA in discriminating resectable PDAC from MFP.


Assuntos
Neoplasias Pancreáticas , Pancreatite , Humanos , Estudos Retrospectivos , Neoplasias Pancreáticas/patologia , Pancreatite/diagnóstico por imagem , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Neoplasias Pancreáticas
10.
Antioxidants (Basel) ; 12(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36978970

RESUMO

The reduction of the cerebral glucose metabolism is closely related to the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in Alzheimer's disease (AD); however, its underlying mechanism remains unclear. In this paper, 18F-flurodeoxyglucose positron emission tomography was used to trace cerebral glucose metabolism in vivo, along with Western blotting and immunofluorescence assays to examine the expression and distribution of associated proteins. Glucose and insulin tolerance tests were carried out to detect insulin resistance, and the Morris water maze was used to test the spatial learning and memory ability of the mice. The results show increased NLRP3 inflammasome activation, elevated insulin resistance, and decreased glucose metabolism in 3×Tg-AD mice. Inhibiting NLRP3 inflammasome activation using CY-09, a specific inhibitor for NLRP3, may restore cerebral glucose metabolism by increasing the expression and distribution of glucose transporters and enzymes and attenuating insulin resistance in AD mice. Moreover, CY-09 helps to improve AD pathology and relieve cognitive impairment in these mice. Although CY-09 has no significant effect on ferroptosis, it can effectively reduce fatty acid synthesis and lipid peroxidation. These findings provide new evidence for NLRP3 inflammasome as a therapeutic target for AD, suggesting that CY-09 may be a potential drug for the treatment of this disease.

11.
Phys Med Biol ; 68(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36821861

RESUMO

Objective.X-ray scatter leads to signal bias and degrades the image quality in Computed Tomography imaging. Conventional real-time scatter estimation and correction methods include the scatter kernel superposition (SKS) methods, which approximate x-ray scatter field as a convolution of the scatter sources and scatter propagation kernels to reflect the spatial spreading of scatter x-ray photons. SKS methods are fast to implement but generally suffer from low accuracy due to the difficulties in determining the scatter kernels.Approach.To address such a problem, this work describes a new scatter estimation and correction method by combining the concept of SKS methods and convolutional neural network. Unlike conventional SKS methods which estimate the scatter amplitude and the scatter kernel based on the value of an individual pixel, the proposed method generates the scatter amplitude maps and the scatter width maps from projection images through a neural network, from which the final estimated scatter field is calculated based on a convolution process.Main Results.By incorporating physics in the network design, the proposed method requires fewer trainable parameters compared with another deep learning-based method (Deep Scatter Estimation). Both numerical simulations and physical experiments demonstrate that the proposed SKS-inspired convolutional neural network outperforms the conventional SKS method and other deep learning-based methods in both qualitative and quantitative aspects.Significance.The proposed method can effectively correct the scatter-related artifacts with a SKS-inspired convolutional neural network design.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Espalhamento de Radiação , Método de Monte Carlo , Redes Neurais de Computação , Tomografia Computadorizada de Feixe Cônico/métodos , Algoritmos
12.
Front Oncol ; 13: 1076400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761966

RESUMO

Purpose: To investigate the incremental prognostic value of preoperative apparent diffusion coefficient (ADC) histogram analysis in patients with high-risk prostate cancer (PCa) who received adjuvant hormonal therapy (AHT) after radical prostatectomy (RP). Methods: Sixty-two PCa patients in line with the criteria were enrolled in this study. The 10th, 50th, and 90th percentiles of ADC (ADC10, ADC50, ADC90), the mean value of ADC (ADCmean), kurtosis, and skewness were obtained from the whole-lesion ADC histogram. The Kaplan-Meier method and Cox regression analysis were used to analyze the relationship between biochemical recurrence-free survival (BCR-fs) and ADC parameters and other clinicopathological factors. Prognostic models were constructed with and without ADC parameters. Results: The median follow-up time was 53.4 months (range, 41.1-79.3 months). BCR was found in 19 (30.6%) patients. Kaplan-Meier curves showed that lower ADCmean, ADC10, ADC50, and ADC90 and higher kurtosis could predict poorer BCR-fs (all p<0.05). After adjusting for clinical parameters, ADC50 and kurtosis remained independent prognostic factors for BCR-fs (HR: 0.172, 95% CI: 0.055-0.541, p=0.003; HR: 7.058, 95% CI: 2.288-21.773, p=0.001, respectively). By adding ADC parameters to the clinical model, the C index and diagnostic accuracy for the 24- and 36-month BCR-fs were improved. Conclusion: ADC histogram analysis has incremental prognostic value in patients with high-risk PCa who received AHT after RP. Combining ADC50, kurtosis and clinical parameters can improve the accuracy of BCR-fs prediction.

13.
Eur Radiol ; 33(3): 1862-1872, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36255487

RESUMO

OBJECTIVES: To investigate whether volumetric visceral adipose tissue (VAT) features extracted using radiomics and three-dimensional convolutional neural network (3D-CNN) approach are effective in differentiating Crohn's disease (CD) and ulcerative colitis (UC). METHODS: This retrospective study enrolled 316 patients (mean age, 36.25 ± 13.58 [standard deviation]; 219 men) with confirmed diagnosis of CD and UC who underwent CT enterography between 2012 and 2021. Volumetric VAT was semi-automatically segmented on the arterial phase images. Radiomics analysis was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm. We developed a 3D-CNN model using VAT imaging data from the training cohort. Clinical covariates including age, sex, modified body mass index, and disease duration that impact VAT were added to the machine learning model for adjustment. The model's performance was evaluated on the testing cohort separating from the model's development process by its discrimination and clinical utility. RESULTS: Volumetric VAT radiomics analysis with LASSO had the highest AUC value of 0.717 (95% CI, 0.614-0.820), though difference of diagnostic performance among the 3D-CNN model (AUC = 0.693; 95% CI, 0.587-0.798) and radiomics analysis with PCA (AUC = 0.662; 95% CI, 0.548-0.776) and LASSO have not reached statistical significance (all p > 0.05). The radiomics score was higher in UC than in CD on the testing cohort (mean ± SD, UC 0.29 ± 1.05 versus CD -0.60 ± 1.25; p < 0.001). The LASSO model with adjustment of clinical covariates reached an AUC of 0.775 (95%CI, 0.683-0.868). CONCLUSION: The developed volumetric VAT-based radiomics and 3D-CNN models provided comparable and effective performance for the characterization of CD from UC. KEY POINTS: • High-output feature data extracted from volumetric visceral adipose tissue on CT enterography had an effective diagnostic performance for differentiating Crohn's disease from ulcerative colitis. • With adjustment of clinical covariates that cause difference in volumetric visceral adipose tissue, adjusted clinical machine learning model reached stronger performance when distinguishing Crohn's disease patients from ulcerative colitis patients.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/diagnóstico por imagem , Colite Ulcerativa/diagnóstico por imagem , Gordura Intra-Abdominal/diagnóstico por imagem , Estudos Retrospectivos , Diagnóstico Diferencial , Doenças Inflamatórias Intestinais/diagnóstico , Tomografia Computadorizada por Raios X , Fenótipo , Aprendizado de Máquina
15.
Front Plant Sci ; 13: 882382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941942

RESUMO

Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.

16.
Cell Biosci ; 12(1): 102, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794650

RESUMO

BACKGROUND: Parkinson's Disease (PD) is the second most frequent degenerative disorder, the risk of which increases with age. A preclinical PD diagnostic test does not exist. We identify PD blood metabolites and metabolic pathways significantly correlated with age to develop personalized age-dependent PD blood biomarkers. RESULTS: We found 33 metabolites producing a receiver operating characteristic (ROC) area under the curve (AUC) value of 97%. PCA revealed that they belong to three pathways with distinct age-dependent behavior: glycine, threonine and serine metabolism correlates with age only in PD patients; unsaturated fatty acids biosynthesis correlates with age only in a healthy control group; and, finally, tryptophan metabolism characterizes PD but does not correlate with age. CONCLUSIONS: The targeted analysis of the blood metabolome proposed in this paper allowed to find specific age-related metabolites and metabolic pathways. The model offers a promising set of blood biomarkers for a personalized age-dependent approach to the early PD diagnosis.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35623332

RESUMO

Attenuation correction aims to recover the underestimated tracer uptake and improve the image contrast recovery in positron emission tomography (PET). However, traditional ray-tracing-based projection of attenuation maps is inaccurate as some physical effects are not considered, such as finite crystal size, inter-crystal penetration and inter-crystal scatter. In this study, we evaluated the effects of applying resolution modeling (RM) to attenuation correction by implementing space-variant RM to complement physical effects which are usually omitted in the traditional projection model. We verified this method on a brain PET scanner developed by our group, in both Monte Carlo simulation and real-world data, in comparison with space-invariant Gaussian RM, average-depth-of-interaction, and multi-ray tracing methods. The results indicate that the space-variant RM is superior in terms of artifacts reduction and contrast recovery.

18.
Insights Imaging ; 13(1): 37, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244793

RESUMO

OBJECTIVES: To develop a diffusion-weighted imaging (DWI) based radiomic signature for predicting early recurrence (ER) (i.e., recurrence within 1 year after surgery), and to explore the potential value for individualized adjuvant chemotherapy. METHODS: A total of 124 patients with intrahepatic cholangiocarcinoma (ICC) were randomly divided into the training (n = 87) and the validation set (n = 37). Radiomic signature was built using radiomic features extracted from DWI with random forest. An integrated radiomic nomogram was constructed with multivariate logistic regression analysis to demonstrate the incremental value of the radiomic signature beyond clinicopathological-radiographic factors. A clinicopathological-radiographic (CPR) model was constructed as a reference. RESULTS: The radiomic signature showed a comparable discrimination performance for predicting ER to CPR model in the validation set (AUC, 0.753 vs. 0.621, p = 0.274). Integrating the radiomic signature with clinicopathological-radiographic factors further improved prediction performance compared with CPR model, with an AUC of 0.821 (95%CI 0.684-0.959) in the validation set (p = 0.01). The radiomic signature succeeded to stratify patients into distinct survival outcomes according to their risk index of ER, and remained an independent prognostic factor in multivariable analysis (disease-free survival (DFS), p < 0.0001; overall survival (OS), p = 0.029). Furthermore, adjuvant chemotherapy improved prognosis in high-risk patients defined by the radiomic signature (DFS, p = 0.029; OS, p = 0.088) and defined by the nomogram (DFS, p = 0.031; OS, p = 0.023), whereas poor chemotherapy efficacy was detected in low-risk patients. CONCLUSIONS: The preoperative DWI-based radiomic signature could improve prognostic prediction and help to identify ICC patients who may benefit from postoperative adjuvant chemotherapy.

19.
J Magn Reson Imaging ; 56(3): 739-751, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35049076

RESUMO

BACKGROUND: The clinical outcomes of patients with intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy remain suboptimal. Identifying patients with poor outcomes before surgery is urgently required. PURPOSE: To develop a multiparametric magnetic resonance imaging (MRI)-based radiomic signature to evaluate overall survival (OS) preoperatively and to investigate its incremental value for disease stratification. STUDY TYPE: Retrospective. SUBJECTS: One hundred and sixty-three patients with pathologically defined ICC, divided into training (N = 115) and validation sets (N = 48). SEQUENCE: Three-dimensional T1-weighted gradient-echo sequence with and without contrast agent, T2-weighted fast spin-echo sequence, and diffusion-weighted imaging with single-shot echo-planar sequence at 1.5 T or 3.0 T. ASSESSMENT: OS was defined as the time from the date of surgery to death or last contact. The radiomic signature was built based on the least absolute shrinkage and selection operator regression model. A clinicopathologic-radiographic (CPR) model and a combined model integrating radiomic signature with CPR factors were developed with multivariable Cox regression models. STATISTICAL TESTS: Harrell's concordance index (C-index) was used to compare the discrimination of different models. Net reclassification index (NRI) and integrated discrimination improvement (IDI) were used to quantify the improvement of prognostic accuracy after adding radiomic signature. RESULTS: The high-risk patients of death defined by the radiomic signature showed significantly lower OS compared with low-risk patients in validation set (3-year OS 17.1% vs. 56.4%, P < 0.001). Integrating radiomic signature into tumor, node, and metastasis (TNM) staging system significantly improved the prognostic accuracy compared with TNM stage alone (validation set C-index 0.745 vs. 0.649, P = 0.039, NRI improvement 39.9%-43.8%, IDI improvement 16.1%-19.4%). The radiomic signature showed no significant difference of C-index with postoperative CPR model (validation set, 0.698 vs. 0.674, P = 0.752). Incorporating the radiomic signature into CPR model significantly improved prognostic accuracy (NRI improvement 32.5%-34.3%, IDI improvement 8.1%-12.9%). DATA CONCLUSION: Multiparametric MRI-based radiomic signature is a potential biomarker for preoperative prognostic evaluation of ICC patients. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 4.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares Intra-Hepáticos , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/cirurgia , Hepatectomia , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
20.
J Oncol ; 2022: 4182540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600966

RESUMO

Anlotinib is a small-molecule RTK inhibitor that has achieved certain results in further-line treatment, but many patients do not respond to this drug and lack effective methods for identification. Although radiomics has been widely used in lung cancer, very few studies have been conducted in the field of antiangiogenic drugs. This study aims to develop a new model to predict the efficacy of patients receiving anlotinib by combining pretreatment computed tomography (CT) radiomic characters with clinical characters, in order to assist precision medicine of pulmonary cancer. 254 patients from seven institutions were involved in the study. Lesions were selected according to the RECIST 1.1 criteria, and the corresponding radiomic features were obtained. We constructed prediction models based on clinical, NCE-CT, and CE-CT radiomic features, respectively, and evaluated the prediction performance of the models for training sets, internal validation sets, and external validation sets. In the RAD score only model, the area under curve(AUC) of the NCE-CT cohort was 0.740 (95% CI: 0.622, 0.857) for the training set, 0.711 (95% CI: 0.480, 0.942) for the internal validation set, and 0.633(95% CI: 0.479, 0.787) for the external validation set, while that of the CE-CT cohort was 0.815 (95% CI: 0.705, 0.926) for the training set, 0.771 (95% CI: 0.539, 1.000) for the internal validation set, and 0.701 (95% CI: 0.489, 0.913) for the external validation set. In the RAD score-combined model, the AUC of the NCE-CT cohort was 0.796 (95% CI: 0.691, 0.901) for the training set, 0.579 (95% CI: 0.309, 0.848) for the internal validation set, and 0.590 (95% CI: 0.427, 0.753) for the external validation set, while that of the CE-CT cohort was 0.902 (95% CI: 0.828, 0.977) for the training set, 0.865 (95% CI: 0.696, 1.000) for the internal validation set, and 0.837 (95% CI: 0.682, 0.992) for the external validation set. In conclusion, radiomics has accurate predictions for the efficacy of anlotinib. CE-CT-based radiomic models have the best predictive potential in predicting the efficacy of anlotinib, and model predictions become better when they are combined with clinical characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...