Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 516(2): 445-450, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31227214

RESUMO

Transforming growth factor-ß 1 (TGFß1)-stimulated clone 22 (TSC22) family includes proteins containing a leucine zipper domain and a TSC-box that are highly conserved during evolution. Currently, limited data are available on the function of this protein family, especially of TSC-22 homologous gene-1 (THG-1)/TSC22 domain family member 4 (TSC22D4). Similar to other family members, THG-1 functions depending on its interaction with the partner proteins and it is suggested to mediate a broad range of biological processes. THG-1-specific binding molecules will be instrumental for elucidating its functions. Therefore, the Random non-standard Peptide Integrated Discovery (RaPID) system was modified using commercially available materials and used for selecting macrocyclic peptides (MCPs) that bind to THG-1. Several MCPs were identified to bind THG-1. Fluorescein- and biotin-tagged MCPs were synthesized and employed as THG-1 detection probes. Notably, a fluorescein-tagged MCP specifically detected THG-1-expressing cells. Biotin-tagged MCPs can be successfully used for Enzyme-Linked Protein Sorbent Assay (ELISA) like assay of THG-1 protein and affinity-precipitation of purified THG-1 and endogenous THG-1 in esophageal squamous cell carcinoma cell lysates. The modified RaPID system rapidly and successfully identified THG-1-binding MCPs in vitro and the synthesized THG-1 binding MCPs are useful alternatives acting for antibodies.


Assuntos
Compostos Macrocíclicos/metabolismo , Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Fluoresceína/metabolismo , Células HEK293 , Humanos
2.
Cancer Sci ; 110(7): 2237-2246, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31127873

RESUMO

Glycoprotein NMB (GPNMB) is highly expressed in many types of malignant tumors and thought to be a poor prognostic factor in those cancers, including breast cancer. Glycoprotein NMB is a type IA transmembrane protein that has a long extracellular domain (ECD) and a short intracellular domain (ICD). In general, the ECD of a protein is involved in protein-protein or protein-carbohydrate interactions, whereas the ICD is important for intracellular signaling. We previously reported that GPNMB contributes to the initiation and malignant progression of breast cancer through the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) in its ICD. Furthermore, we showed that the tyrosine residue in hemITAM is involved in induction of the stem-like properties of breast cancer cells. However, the contribution of the ECD to its tumorigenic function has yet to be fully elucidated. In this study, we focused on the region, the so-called kringle-like domain (KLD), that is conserved among species, and made a deletion mutant, GPNMB(ΔKLD). Enhanced expression of WT GPNMB induced sphere and tumor formation in breast epithelial cells; in contrast, GPNMB(ΔKLD) lacked these activities without affecting its molecular properties, such as subcellular localization, Src-induced tyrosine phosphorylation at least in overexpression experiments, and homo-oligomerization. Additionally, GPNMB(ΔKLD) lost its cell migration promoting activity, even though it reduced E-cadherin expression. Although the interaction partner binding to KLD has not yet been identified, we found that the KLD of GPNMB plays an important role in its tumorigenic potential.


Assuntos
Neoplasias da Mama/patologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Sequência Conservada , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Kringles , Glicoproteínas de Membrana/genética , Camundongos , Transplante de Neoplasias
3.
Sci Signal ; 10(474)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28400538

RESUMO

Triple-negative breast cancer (TNBC) is particularly aggressive and difficult to treat. For example, the transforming growth factor-ß (TGF-ß) pathway is implicated in TNBC progression and metastasis, but its opposing role in tumor suppression in healthy tissues and early-stage lesions makes it a challenging target. Therefore, additional molecular characterization of TNBC may lead to improved patient prognosis by informing the development and optimum use of targeted therapies. We found that musculoaponeurotic fibrosarcoma (MAF) oncogene family protein K (MAFK), a member of the small MAF family of transcription factors that are induced by the TGF-ß pathway, was abundant in human TNBC and aggressive mouse mammary tumor cell lines. MAFK promoted tumorigenic growth and metastasis by 4T1 cells when implanted subcutaneously in mice. Overexpression of MAFK in mouse breast epithelial NMuMG cells induced epithelial-mesenchymal transition (EMT) phenotypes and promoted tumor formation and invasion in mice. MAFK induced the expression of the gene encoding the transmembrane glycoprotein nmb (GPNMB). Similar to MAFK, GPNMB overexpression in NMuMG cells induced EMT, tumor formation, and invasion, in mice, whereas knockdown of MAFK in tumor cells before implantation suppressed tumor growth and progression. MAFK and GPNMB expression correlated with poor prognosis in TNBC patients. These findings suggest that MAFK and its target gene GPNMB play important roles in the malignant progression of TNBC cells, offering potentially new therapeutic targets for TNBC patients.


Assuntos
Transição Epitelial-Mesenquimal/genética , Fator de Transcrição MafK/genética , Glicoproteínas de Membrana/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Células MCF-7 , Fator de Transcrição MafK/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Invasividade Neoplásica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA