Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(8): e202315599, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38169100

RESUMO

Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 µmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.

2.
Nat Mater ; 22(6): 786-792, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37217702

RESUMO

Seeded growth of crystallizable block copolymers and π-stacking molecular amphiphiles in solution using living crystallization-driven self-assembly is an emerging route to fabricate uniform one-dimensional and two-dimensional core-shell micellar nanoparticles of controlled size with a range of potential applications. Although experimental evidence indicates that the crystalline core of these nanomaterials is highly ordered, a direct observation of their crystal lattice has not been successful. Here we report the high-resolution cryo-transmission electron microscopy studies of vitrified solutions of nanofibres made from a crystalline core of poly(ferrocenyldimethylsilane) (PFS) and a corona of polysiloxane grafted with 4-vinylpyridine groups. These studies show that poly(ferrocenyldimethylsilane) chains pack in an 8-nm-diameter core lattice with two-dimensional pseudo-hexagonal symmetry that is coated by a 27 nm 4-vinylpyridine corona with a 3.5 nm distance between each 4-vinylpyridine strand. We combine this structural information with a molecular modelling analysis to propose a detailed molecular model for solvated poly(ferrocenyldimethylsilane)-b-4-vinylpyridine nanofibres.

3.
Angew Chem Int Ed Engl ; 56(39): 11764-11768, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28727219

RESUMO

Screw dislocation structures in crystals are an origin of symmetry breaking in a wide range of dense-phase crystals. Preparation of such analogous structures in framework-phase crystals is of great importance in zeolites but is still a challenge. On the basis of crystal-structure solving and model building, it was found that the two specific intergrowths in MTW zeolite produce this complex fractal and spiral structure. With the structurally determined parameters (spiral pitch h, screw angle θ, and spatial angle ψ) of Burgers circuit, the screw dislocation structure can be constructed by two different dimensional intergrowth sections. Thus the reported complexity of various dimensions in diverse crystals can be unified.

4.
Nat Commun ; 7: 11580, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161853

RESUMO

Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3](2+)-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3](2+) units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.

5.
J Am Chem Soc ; 137(35): 11532-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26289453

RESUMO

The solid phase transition of TiO2, in particular anatase to rutile, has been extensively studied in the past 30 years. To seek the nucleation site at the beginning of phase transition is highly challenging, which asks for new theoretical techniques with high spatial and temporal resolution. This work reports the first evidence on the atomic structure of the nucleation sites in the TiO2 anatase-to-rutile phase transition. Novel automated theoretical methods, namely stochastic surface walking based pathway sampling methods, are utilized to resolve the lowest energy pathways at the initial stage of phase transition. We show that among common anatase surfaces, only the (112) ridged surface provides the nucleation site for phase transition, which can lead to the formation of both TiO2-II and brookite thin slabs. The TiO2-II phase is kinetically preferred product; the propagation into the subsurface is still hindered by high barriers that is the origin for the slow kinetics of nuclei formation. The rutile nuclei are thus not rutile phase but nascent metastable TiO2-II phase in an anatase matrix. The phase transition kinetics is found to be sensitive to the compressive strain and the crystallographic directions. The results rationalize the size and morphology dependence of the anisotropic phase transition kinetics of anatase particles and could facilitate the rational design of material via controlled solid phase transition.

6.
Nat Commun ; 5: 5574, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25470406

RESUMO

Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. Here we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating the solvent, the periodicity of the framework is maintained in porous microcrystals. As a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.

7.
Chem Commun (Camb) ; 50(65): 9138-40, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24990297

RESUMO

A novel bifunctional catalyst based on partially reduced iridium oxide supported on TiO2 was found to be exceedingly efficient for the organic-solvent-free synthesis of dimethylformamide from CO2, H2 and dimethylamine.

8.
J Phys Chem Lett ; 5(18): 3162-8, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26276327

RESUMO

Bicrystalline materials have wide applications from silicon chips to photocatalysis, but the controlled synthesis of nanocrytals with ordered phase junction has been challenging, in particular via chemical synesthetic routes. Here, we propose a general strategy to design biphase crystals formed via partial solid-to-solid phase transition with perfect phase junction, e.g., being atomically sharp and built of two particular sets of epitaxially joined planes of the two component phases, and present such an example by designing, synthesizing, and characterizing the interface of two TiO2 phases, namely, TiO2-B/anatase biphase nanocrystals that are obtained conveniently via one-pot chemical synthesis. Our design strategy classifies the common solid-to-solid phase transition into three types that are distinguishable by using the newly developed stochastic surface walking (SSW) method for unbiased pathway sampling. Only Type-I crystal is predicted to possess perfect phase junction, where the phase transition involves one and only one propagation direction featuring single pathway phase transition containing only one elementary kinetic step. The method is applicable for the understanding and the design of heterophase materials via partial phase transition in general.

9.
Chem Commun (Camb) ; (6): 700-1, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12703780

RESUMO

Thermally stable mesoporous core-shell structured titania microspheres with well-defined hollow interiors were directly prepared by a novel hydrothermal precipitation of TiCl4 in the presence of urea and ammonium sulfate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...