Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698265

RESUMO

Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-ß1 (TGF-ß1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-ß1 to specifically deplete human Tregs but not other cell types a challenge. TGF-ß1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-ß1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-ß1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-ß1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-ß1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.

2.
Org Biomol Chem ; 22(13): 2677, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477554

RESUMO

Expression of Concern for 'Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway' by Zhi-Yong Tian et al., Org. Biomol. Chem., 2009, 7, 4651-4660, https://doi.org/10.1039/B912685F.

3.
Chem Sci ; 15(8): 2867-2882, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404376

RESUMO

The regulation of enzymes and development of polyamine analogs capable of controlling the dynamics of endogenous polyamines to achieve anti-tumor effects is one of the biggest challenges in polyamine research. However, the root of the problem remains unsolved. This study represents a significant milestone as it unveils, for the first time, the comprehensive catalytic map of acetylpolyamine oxidase that includes chemical transformation and product release kinetics, by utilizing multiscale simulations with over six million dynamical snapshots. The transportation of acetylspermine is strongly exothermic, and high binding affinity of enzyme and reactant is observed. The transfer of hydride from polyamine to FAD is the rate-limiting step, via an H-shift coupled electron transfer mechanism. The two products are released in a detour stepwise mechanism, which also impacts the enzymatic efficiency. Inspired by these mechanistic insights into enzymatic catalysis, we propose a novel strategy that regulates the polyamine level and catalytic progress through the action of His64. Directly suppressing APAO by mutating His64 further inhibited growth and migration of tumor cells and tumor tissue in vitro and in vivo. Therefore, the network connecting microcosmic and macroscopic scales opens up new avenues for designing polyamine compounds and conducting anti-tumor research in the future.

4.
Cancer Cell Int ; 23(1): 258, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919754

RESUMO

BACKGROUND: Metastasis is still a major cause of poor pathological outcome and prognosis in esophageal squamous cell carcinoma (ESCC) patients. NUAK1 has been reported highly expressed in many human cancers and is associated with the poor prognosis of cancer patients. However, the role of NUAK1 and its underlying signaling mechanism in ESCC metastasis remain unclear. METHODS: Expression of NUAK1 in ESCC was detected by real-time quantitative RT-PCR (qRT-PCR), Western blotting and immunohistochemical staining. MTT, colony formation, wound-healing and transwell assays were used to determine the role NUAK1 in vitro. Metastasis was evaluated by use of an experimental pulmonary metastasis model in BALB/c-nu/nu mice. The mechanisms were assessed by using coimmunoprecipitation, immunofluorescence and dual-luciferase reporter gene experiments. RESULTS: NUAK1 was highly expressed in ESCC tissues compared with the adjacent normal esophageal epithelial tissues. Moreover, the elevated expression of NUAK1 positively correlated with tumor invasion depth, lymph node metastasis, pathological TNM stage, and poor survival in ESCC patients. Further experiments showed that NUAK1 overexpression did not change the cell viability and colony formation of ESCC cells, while remarkably promoted the migration and invasion in vitro and experimental pulmonary metastasis in vivo. Mechanistically, NUAK1 enhanced the transcription level of Slug, which enhanced the migratory and invasive capability of ESCC cells. Consistently, silencing Slug almost completely diminished the migration and invasion of NUAK1-overexpressing ESCC cells. Further studies demonstrated that NUAK1 upregulated the transcription activity of Slug through activating the JNK/c-Jun pathway. CONCLUSION: These results demonstrated that NUAK1 promoted the metastasis of ESCC cells through activating JNK/c-Jun/Slug signaling, indicating NUAK1 is a promising therapeutic target for metastatic ESCC.

5.
J Exp Clin Cancer Res ; 42(1): 192, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37537587

RESUMO

BACKGROUND: Platinum-drugs based chemotherapy in clinic increases the potency of tumor cells to produce M2 macrophages, thus leading to poor anti-metastatic activity and immunosuppression. Lysosome metabolism is critical for cancer cell migration and invasion, but how it promotes antitumor immunity in tumours and macrophages is poorly understood and the underlying mechanisms are elusive. The present study aimed to explore a synergistic strategy to dismantle the immunosuppressive microenvironment of tumours and metallodrugs discovery by using the herent metabolic plasticity. METHODS: Naphplatin was prepared by coordinating an active alkaline moiety to cisplatin, which can regulate the lysosomal functions. Colorectal carcinoma cells were selected to perform the in vivo biological assays. Blood, tumour and spleen tissues were collected and analyzed by flow cytometry to further explore the relationship between anti-tumour activity and immune cells. Transformations of bone marrow derived macrophage (BMDM) and M2-BMDM to the M1 phenotype was confirmed after treatment with naphplatin. The key mechanisms of lysosome-mediated mucolipin-1(Mcoln1) and mitogen-activated protein kinase (MAPK) activation in M2 macrophage polarization have been unveiled. RNA sequencing (RNA-seq) was used to further explore the key mechanism underlying high-mobility group box 1(HMGB1)-mediated Cathepsin L(CTSL)-lysosome function blockade. RESULTS: We demonstrated that naphplatin induces divergent lysosomal metabolic programs and reprograms macrophages in tumor cells to terminate the vicious tumour-associated macrophages (TAMs)-MDSCs-Treg triangle. Mechanistically, macrophages treated with naphplatin cause lysosome metabolic activation by triggering Ca2+ release via Mcoln1, which induces the activation of p38 and nuclear factor-κB (NF-κB) and finally results in polarizing M2 macrophages. In contrast, HMGB1-mediated lysosome metabolic blockade in cancer cells is strongly linked to antitumor effects by promoting cytoplasmic translocation of HMGB1. CONCLUSIONS: This study reveals the crucial strategies of macrophage-based metallodrugs discovery that are able to treat both immunologically "hot" and "cold" cancers. Different from traditional platinum-based antitumour drugs by inhibition of DNAs, we also deliver a strong antitumour strategy by targeting lysosome to induce divergent metabolic programs in macrophages and tumours for cancer immunotherapy.


Assuntos
Antineoplásicos , Proteína HMGB1 , Neoplasias , Humanos , Proteína HMGB1/metabolismo , Macrófagos/metabolismo , Neoplasias/patologia , Imunoterapia , Antineoplásicos/farmacologia , Lisossomos/metabolismo , Microambiente Tumoral
6.
Phytother Res ; 37(10): 4655-4673, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525965

RESUMO

The worldwide overall 5-year survival rate of esophageal squamous cell carcinoma (ESCC) patients is less than 20%, and novel therapeutic strategies for these patients are urgently needed. Harmine is a natural ß-carboline alkaloid, which received great interest in cancer research because of its biological and anti-tumor activities. The aim of this study is to examine the effects of harmine on ESCC and its mechanism. We investigated the effects of harmine on proliferation, cell cycle, apoptosis, and tumor growth in vivo. RNA sequencing (RNA-seq), real-time PCR, and western blotting were used to detect the mechanism. Harmine inhibited ESCC cell growth in vitro and tumor growth in vivo. Differentially expressed genes in harmine-treated ESCC cells were mainly involved in protein processing in the endoplasmic reticulum (ER). Real-time PCR and western blotting confirmed harmine-induced cellular ER stress. CRISPR-Cas9 knockout of C/EBP homologous protein (CHOP) abolished harmine-induced expression of death receptor 5 and apoptosis. Harmine also induced the expression of CHOP-mediated sestrin-2, which in turn contributes to autophagosome formation via suppressing the AMP-activated protein kinase-protein kinase B-mammalian target of rapamycin signaling pathway. In conclusion, our results demonstrate that harmine inhibits the growth of ESCC through its regulation of ER stress, suggesting that it is a promising candidate for ESCC treatment.

7.
Phytomedicine ; 112: 154715, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36821999

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality in the world. However, the anticancer effects of aucubin against HCC have yet to be reported. Cisplatin often decreased CD8+ tumor-infiltrating lymphocytes in the tumor microenvironment through increasing programmed death-ligand 1 (PD-L1) expression, which seriously affected the prognostic effect of cisplatin in the treatment of patients with HCC. Therefore, it is necessary to identify a novel therapeutic avenue to increase the sensitivity of cisplatin against HCC. PURPOSE: This study aims to evaluate the anti-tumor effect of aucubin on HCC, and also to reveal the synergistic effects and mechanism of aucubin and cisplatin against HCC. STUDY DESIGN AND METHODS: An H22 xenograft mouse model was established for the in vivo experiments. Cancer cell proliferation was detected by MTT assay. RT-qPCR was performed to analyze CD274 mRNA expression in vitro. Western blotting was employed to determine the expression levels of the PD-L1, p-Akt, Akt, p-ß-catenin, and ß-catenin in vitro. Immunofluorescence was carried out to examine ß-catenin nuclear accumulation in HCC cells. Immunohistochemistry was used to detect tumoral PD-L1 and CD8α expression in xenograft mouse model. RESULTS: Aucubin inhibits tumor growth in a xenograft HCC mouse model, but did not affect HCC cell viability in vitro. Aucubin treatment significantly inhibited PD-L1 expression through inactivating Akt/ß-catenin signaling pathway in HCC cells. Overexpression of PD-L1 dramatically reversed aucubin-mediated tumoral CD8+ T cell infiltration and alleviated the antitumor activity of aucubin in xenograft mouse model. Moreover, Cisplatin could induce the expression of PD-L1 through the activation of the Akt/ß-catenin signaling pathway in HCC cells, which can be blocked by aucubin in vitro. In xenograft mouse model, cisplatin treatment induced PD-L1 expression and alleviated the infiltration of CD8+ T lymphocytes in the tumor microenvironment. Aucubin not only abrogated cisplatin-induced PD-L1 expression but also enhanced the antitumor efficacy of cisplatin in a mouse xenograft model of HCC. CONCLUSION: Aucubin exerts antitumor activity against HCC and also enhances the antitumor activity of cisplatin by suppressing the Akt/ß-catenin/PD-L1 axis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Biochem Pharmacol ; 208: 115378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36513141

RESUMO

Understanding the mechanisms regulating PD-L1 expression in hepatocellular carcinoma (HCC) is important to improve the response rate to PD-1/PD-L1 blockade therapy. Here, we show that DKK1 expression is positively associated with PD-L1 expression and inversely correlated with CD8+ T cell infiltration in human HCC tumor specimens. In a subcutaneous xenograft tumor model, overexpression of DKK1 significantly promotes tumor growth, tumoral PD-L1 expression, but reduces tumoral CD8+ T cell infiltration; whereas knockdown of DKK1 has opposite effects. Moreover, enforced expression of DKK1 dramatically promotes PD-L1 expression, Akt activation, ß-catenin phosphorylation and total protein expression in HCC cells. By contrast, knockdown of DKK1 inhibits all, relative to controls. In addition, CKAP4 depletion, Akt inhibition, or ß-catenin depletion remarkably abrogates DKK1 overexpression-induced transcriptional expression of PD-L1 in HCC cells. Reconstituted expression of the active Akt1 largely increased PD-L1 transcriptional expression in HCC cells. Similarly, expression of WT ß-catenin, but not the phosphorylation-defective ß-catenin S552A mutant, significantly promotes PD-L1 expression. Correlation analysis of human HCC tumor specimens further revealed that DKK1 and PD-L1 expression were positively correlated with p-ß-catenin expression. Together, our findings revealed that DKK1 promotes PD-L1 expression through the activation of Akt/ß-catenin signaling, providing a potential strategy to enhance the clinical efficacy of PD-1/PD-L1 blockade therapy in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , beta Catenina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt , Evasão Tumoral
9.
Invest New Drugs ; 41(1): 13-24, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331675

RESUMO

Neratinib, an irreversible pan-HER tyrosine kinase inhibitor, has been approved for the treatment of HER2-positive (HER2+) early-stage and brain metastatic breast cancer. Thus far, the pharmacology effects and pharmacodynamics of neratinib have been well studied. However, the disposition of neratinib and its influencing factors in vivo remain unclear. P-glycoprotein (P-gp), one of the most extensively studied transporters, substantially restricts penetration of drugs into the body or deeper compartments (i.e., blood-brain barrier, BBB), regarding drug resistance and drug-drug interactions. Thereby, the aim of this study was to investigate the influence of verapamil (a P-gp inhibitor) on the pharmacokinetics of neratinib in rats. Here, we have established a high specific, selective and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify plasma concentrations of neratinib in rats. Pharmacokinetic results showed that verapamil significantly increased the system exposure of neratinib, as Cmax increased by 2.09-fold and AUC0-t increased by 1.64-fold, respectively. Additionally, the in vitro transport of neratinib was evaluated using Madin-Darby canine kidney II (MDCK II) and human MDR1 gene overexpressed MDCK (MDCK-MDR1) cell line models. As a result, the net flux ratio was over than 2 and decreased over 50% by verapamil, suggesting that neratinib was a substrate of P-gp. Hence, our findings have highlighted the important role of P-gp in the system exposure of neratinib in vivo, and drug-drug interaction should be considered when coadministration of P-gp inhibitors with neratinib. These findings may support the further clinical development and application of neratinib.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Humanos , Ratos , Animais , Cães , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Verapamil/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
10.
Cell Commun Signal ; 20(1): 175, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348350

RESUMO

BACKGROUND: Spermine is frequently elevated in tumor tissues and body fluids of cancer patients and is critical for cancer cell proliferation, migration and invasion. However, the immune functions of spermine in hepatocellular carcinoma progression remains unknown. In the present study, we aimed to elucidate immunosuppressive role of spermine in hepatocellular carcinoma and to explore the underlying mechanism. METHODS: Whole-blood spermine concentration was measured using HPLC. Human primary HCC tissues were collected to examine the expression of CaSR, p-Akt, ß-catenin, STT3A, PD-L1, and CD8. Mouse model of tumorigenesis and lung metastasis were established to evaluate the effects of spermine on hepatocellular carcinoma. Western blotting, immunofluorescence, real time PCR, digital Ca2+ imaging, and chromatin immunoprecipitation assay were used to investigate the underlying mechanisms by which spermine regulates PD-L1 expression and glycosylation in hepatocellular carcinoma cells. RESULTS: Blood spermine concentration in the HCC patient group was significantly higher than that in the normal population group. Spermine could facilitate tumor progression through inducing PD-L1 expression and decreasing the CD8+ T cell infiltration in HCC. Mechanistically, spermine activates calcium-sensing receptor (CaSR) to trigger Ca2+ entry and thereby promote Akt-dependent ß-catenin stabilization and nuclear translocation. Nuclear ß-catenin induced by spermine then activates transcriptional expression of PD-L1 and N-glycosyltransferase STT3A, while STT3A in turn increases the stability of PD-L1 through inducing PD-L1 protein N-glycosylation in HCC cells. CONCLUSIONS: This study reveals the crucial function of spermine in establishing immune privilege by increasing the expression and N-glycosylation of PD-L1, providing a potential strategy for the treatment of hepatocellular carcinoma. Video Abstract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Antígeno B7-H1/metabolismo , beta Catenina , Neoplasias Hepáticas/patologia , Espermina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Eur J Med Chem ; 243: 114680, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36152386

RESUMO

Platinum-based antitumor drugs have been used in many types of tumors due to its broad antitumor spectrum in clinic. Encouraged by the cisplatin's (CDDP) worldwide success in cancer chemotherapy, the research in platinum-based antitumor drugs has evolved from traditional platinum drug to multi-ligand and multifunctional platinum prodrugs over half a century. With the rapid development of metal drugs and the anticancer immune response, challenges and opportunities in platinum drug research have been shifted from traditional platinum-based drugs to platinum-based hybrids and the direction of development is tending toward photodynamic therapy, nano-delivery therapy, drug combination, targeted therapy, diagnostic therapy, immune-combination therapy and tumor stem cell therapy. In this review, we first exhaustively overviewed the role of platinum-based antitumor prodrugs and the anticancer immune response in medicinal inorganic chemistry based on the special nanomaterials, the modification of specific ligands, and the multiple functions obtained that are beneficial for tumor therapy in the last five years. We also categorized them according to drug potency and function. There hasn't been a comprehensive evaluation of precursor platinum drugs in prior articles. And a multifarious approach to distinguish and detail the variety of alterations of platinum-based precursors in various valence states also hasn't been summarized. In addition, this review points out the main problems at the interface of chemistry, biology, and medicine from their action mechanisms for current platinum drug development, and provides up-to-date potential strategies from drug design perspectives to circumvent those drawbacks. And a promising idea is also enlightened for researchers in the development and discovery of platinum prodrugs.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Platina/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Química Inorgânica , Ligantes , Imunidade
12.
Food Funct ; 13(20): 10558-10573, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36156668

RESUMO

Extensive phase II metabolic reactions (i.e., glucuronidation and sulfation) have resulted in low bioavailability and decreased biological effects of curcumin and quercetin. Compared to glucuronidation, information on the sulfation disposition of curcumin and quercetin is limited. In this study, we identified that BCRP and MRP4 played a critical role in the cellular excretion of curcumin-O-sulfate (C-O-S) and quercetin-O-sulfate (Q-O-S) by integrating chemical inhibition with transporter knock-down experiments. Inhibited excretion of sulfate (C-O-S and Q-O-S) caused significant reductions in cellular O-sulfation of curcumin (a maximal 74.4% reduction) and quercetin (a maximal 76.9% reduction), revealing a strong interplay of sulfation with efflux transport. It was further identified that arylsulfatase B (ARSB) played a crucial role in the regulation of cellular O-sulfation by transporters. ARSB overexpression significantly enhanced the reduction effect of MK-571 on the cellular O-sulfation (fmet) of the model compound (38.8% reduction for curcumin and 44.2% reduction for quercetin). On the contrary, ARSB knockdown could reverse the effect of MK-571 on the O-sulfation disposition of the model compound (29.7% increase for curcumin and 47.3% increase for quercetin). Taken together, ARSB has been proven to be involved in cellular O-sulfation, accounting for transporter-dependent O-sulfation of curcumin and quercetin. A better understanding of the interplay beneath metabolism and transport will contribute to the exact prediction of in vivo drug disposition and drug-drug interactions.


Assuntos
Curcumina , N-Acetilgalactosamina-4-Sulfatase , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arilsulfotransferase , Curcumina/farmacologia , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Proteínas de Neoplasias/metabolismo , Propionatos , Quercetina , Quinolinas , Sulfatos/metabolismo
13.
Eur J Pharmacol ; 922: 174886, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35292248

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignant tumors with high incidence and mortality. The prognosis of HCC is poor due to the high postoperative recurrence rate and metastasis rate. Epithelial-mesenchymal transition (EMT) plays a key role in the metastasis of HCC, which is closely related to the invasion, intrahepatic metastasis and low survival rate. Here we demonstrated that cinobufotalin can upregulate epithelial markers (E-cadherin) and downregulate mesenchymal markers (N-cadherin, snail, slug and ZEB1) in HepG2, SMMC-7721 and SNU-368 cells. We further found that the mRNA and protein expression of ß-catenin and its target genes (i.e. MMP7 and DKK1), which are related to tumor invasion and metastasis, were decreased after cinobufotalin treatment. Overexpression of ß-catenin promoted EMT of HepG2 and SMMC-7721 cells, and cinobufotalin could antagonize this induction. While Knockdown of ß-catenin could inhibit EMT and cinobufotalin enhanced this inhibition. In addition, cinobufotalin significantly suppressed the tumor EMT, as demonstrated by increased E-cadherin expression and decreased N-cadherin and vimentin expression, and inhibited formation and metastasis of lung metastases in vivo. In conclusion, our study has revealed a novel anticancer mechanism of cinobufotalin, which inhibits EMT progress by downregulating ß-catenin, and then prevents the migration and invasion of HCC. These results provide convincing evidence for the development of cinobufotalin as a potential HCC metastasis inhibitor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Bufanolídeos , Caderinas/genética , Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , beta Catenina/metabolismo
14.
Cell Death Dis ; 12(11): 1048, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741018

RESUMO

Metastasis is one of most lethal causes that confer a poor prognosis of patients with esophageal squamous cell carcinoma (ESCC), whereas there is no available target drug for metastatic ESCC currently. In this study, we aimed to determine whether the transcriptional inhibition by CDK7/9 inhibitor SNS-032 is activity against ESCC. MTT and soft agar assays were performed to examine the influence of SNS-032 on ESCC growth in vitro. Tumor xenograft in nude mice was used to assess the antitumor activity of SNS-032 in vivo. The roles of SNS-032 in ESCC metastasis were conducted by wound healing and transwell assays in vitro, and by a lung and a popliteal lymph node metastasis model in vivo. The results showed that CDK7 and CDK9 were highly expressed in ESCC cells; SNS-032 effectively inhibited cellular viability, abrogated anchorage-independent growth, and potentiated the sensitivity to cisplatin in ESCC cells in vitro and in vivo. In addition, SNS-032 induced a mitochondrial-dependent apoptosis of ESCC cells by reducing Mcl-1 transcription. SNS-032 also potently abrogated the abilities of ESCC cell migration and invasion through transcriptional downregulation of MMP-1. Importantly, SNS-032 remarkably inhibited the growth of ESCC xenograft, increased the overall survival, as well as diminished the lung and lymph node metastasis in nude mice. Taken together, our findings highlight that the CDK7/9 inhibitor SNS-032 is a promising therapeutic agent, and warrants a clinical trial for its efficacy in ESCC patients, even those with metastasis.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Oxazóis/farmacologia , Tiazóis/farmacologia , Transcrição Gênica , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Quinase 9 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Transcrição Gênica/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Quinase Ativadora de Quinase Dependente de Ciclina
15.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681647

RESUMO

Increasing the level of reactive oxygen species (ROS) in cancer cells has been suggested as a viable approach to cancer therapy. Our previous study has demonstrated that mitochondria-targeted flavone-naphthalimide-polyamine conjugate 6c elevates the level of ROS in cancer cells. However, the detailed role of ROS in 6c-treated cancer cells is not clearly stated. The biological effects and in-depth mechanisms of 6c in cancer cells need to be further investigated. In this study, we confirmed that mitochondria are the main source of 6c-induced ROS, as demonstrated by an increase in 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox fluorescence. Compound 6c-induced mitochondrial ROS caused mitochondrial dysfunction and lysosomal destabilization confirmed by absolute quantitation (iTRAQ)-based comparative proteomics. Compound 6c-induced metabolic pathway dysfunction and lysosomal destabilization was attenuated by N-acetyl-L-cysteine (NAC). iTRAQ-based comparative proteomics showed that ROS regulated the expression of 6c-mediated proteins, and treatment with 6c promoted the formation of autophagosomes depending on ROS. Compound 6c-induced DNA damage was characterized by comet assay, p53 phosphorylation, and γH2A.X, which was diminished by pretreatment with NAC. Compound 6c-induced cell death was partially reversed by 3-methyladenine (3-MA), bafilomycin (BAF) A1, and NAC, respectively. Taken together, the data obtained in our study highlighted the involvement of mitochondrial ROS in 6c-induced autophagic cell death, mitochondrial and lysosomal dysfunction, and DNA damage.


Assuntos
Morte Celular Autofágica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Naftalimidas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Autofagossomos/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Naftalimidas/química , Proteoma/análise , Proteômica/métodos , Proteína Sequestossoma-1/metabolismo
16.
Front Oncol ; 11: 733589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540699

RESUMO

Lysosomes have become a hot topic in tumor therapy; targeting the lysosome is therefore a promising strategy in cancer therapy. Based on our previous lysosome-targeted bio-imaging agent, homospermine-benzo[cd]indol-2(1H)-one conjugate (HBC), we further developed three novel series of polyamine- benzo[cd]indol-2(1H)-one conjugates. Among them, compound 15f showed potent inhibitory activity in hepatocellular carcinoma migration both in vitro and in vivo. Our study results showed that compound 15f entered the cancer cells via the polyamine transporter localized in the lysosomes and caused autophagy and apoptosis. The mechanism of action revealed that the crosstalk between autophagy and apoptosis induced by 15f was mutually reinforcing patterns. Besides, 15f also targeted lysosomes and exhibited stronger green fluorescence than HBC, which indicated its potential as an imaging agent. To summarize, compound 15f could be used as a valuable dual-functional lead compound for future development against liver-cancer metastasis and lysosome imaging.

19.
Cancer Lett ; 519: 30-45, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34166768

RESUMO

Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Oxidative phosphorylation (OXPHOS) has attracted a considerable attention in CRC. It is of great interest to explore novel therapies that inhibit OXPHOS for CRC treatment. Compound 6c is a novel naphthalimide derivative. However, the effects of 6c on CRC and the underlying mechanism are unclear. In this study, 6c suppressed CRC tumor growth and metastasis. RNA-seq data showed that 6c triggered the inhibition of OXPHOS and tricarboxylic acid cycle. 6c specifically inhibited mitochondrial complex III activity and the expression of isocitrate dehydrogenase 2 (IDH2), resulting in oxidative stress. Antioxidants reversed 6c-induced cell death, senescence, and autophagosomes formation. 6c inhibited autophagy flux; however, pretreatment with autophagy inhibitors resulted in the reduction of 6c-induced cytoplasmic vacuolization and proliferation inhibition. Moreover, combinatory treatment of 6c and mitoxantrone (MIT) showed stronger inhibitory effects on CRC compared with the single agent. Downregulation of IDH2 induced reactive oxygen species production, leading to MIT accumulation and autophagic cell death after co-treatment with 6c and MIT. In summary, our findings indicated 6c as a promising candidate for CRC treatment.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Isocitrato Desidrogenase/metabolismo , Mitoxantrona/farmacologia , Naftalimidas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
Eur J Med Chem ; 221: 113469, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33965862

RESUMO

Disseminated tumors lead to approximately 90% of cancer-associated deaths especially for hepatocellular carcinoma (HCC), indicating the imperative need of antimetastatic drugs and the ineffectiveness of current therapies. Recently polyamine derivatives have been identified as a promising prospect in dealing with metastatic tumors. Herein, a novel class of naphthalimide-polyamine conjugates 8a-8d, 13a-13c, 17 and 21 were synthesized and the mechanism was further determined. The polyamine conjugate 13b displayed remarkably elevated anti-tumor and anti-metastatic effects (76.01% and 75.02%) than the positive control amonafide (46.91% and 55.77%) at 5 mg/kg in vivo. The underlying molecular mechanism indicated that in addition to induce DNA damage by up-regulating p53 and γH2AX, 13b also targeted lysosome to modulate polyamine metabolism and function in a totally different way from that of amonafide. Furthermore, the HMGB1/p62/LC3II/LC3I and p53/SSAT/ß-catenin pathways were mainly involved in the inhibition of 13b-induced HCC metastasis by targeting polyamine transporters (PTs) overexpressed in HCC. At last, 13b down-regulated the concentrations of Put, Spd and Spm by modulating polyamine metabolism key enzymes SSAT and PAO, which favored the suppression of fast growing tumor cells. Taken together, our study implies a promising strategy for naphthalimide conjugates to treat terminal cancer of HCC by targeting autophagy and tumor microenvironment with reduced toxicities and notable activities.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Naftalimidas/farmacologia , Poliaminas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/secundário , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Lisossomos/efeitos dos fármacos , Estrutura Molecular , Naftalimidas/química , Poliaminas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...