Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Viruses ; 16(4)2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675868

RESUMO

E-20-monooxygenase (E20MO) is an enzymatic product of the shade (shd) locus (cytochrome p450, E20MO). Initially discovered in Drosophila, E20MO facilitates the conversion of ecdysone (E) into 20-hydroxyecdysone (20E) and is crucial for oogenesis. Prior research has implicated 20E in growth, development, and insecticide resistance. However, little attention has been given to the association between the E20MO gene and DENV2 infection. The transcriptome of Ae. aegypti cells (Aag2 cells) infected with DENV2 revealed the presence of the E20MO gene. The subsequent quantification of E20MO gene expression levels in Aag2 cells post-DENV infection was carried out. A CRISPR/Cas9 system was utilized to create an E20MO gene knockout cell line (KO), which was then subjected to DENV infection. Analyses of DENV2 copies in KO and wild-type (WT) cells were conducted at different days post-infection (dpi). Plasmids containing E20MO were constructed and transfected into KO cells, with pre- and post-transfection viral copy comparisons. Gene expression levels of E20MO increased after DENV infection. Subsequently, a successful generation of an E20MO gene knockout cell line and the verification of code-shifting mutations at both DNA and RNA levels were achieved. Furthermore, significantly elevated DENV2 RNA copies were observed in the mid-infection phase for the KO cell line. Viral RNA copies were lower in cells transfected with plasmids containing E20MO, compared to KO cells. Through knockout and plasmid complementation experiments in Aag2 cells, the role of E20MO in controlling DENV2 replication was demonstrated. These findings contribute to our understanding of the intricate biological interactions between mosquitoes and arboviruses.


Assuntos
Aedes , Vírus da Dengue , Técnicas de Inativação de Genes , Replicação Viral , Animais , Replicação Viral/genética , Aedes/virologia , Aedes/genética , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Sistemas CRISPR-Cas , Dengue/virologia
2.
Biomedicines ; 12(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38255195

RESUMO

GNBPB6, a beta-1,3-glucan-binding protein, was identified in the transcriptome of Aedes aegypti (A. aegypti) with dengue (DENV), Zika (ZIKV), and chikungunya viruses (CHIKV). In this study, we not only clarified that DENV2 and ZIKV regulate the changes in GNBPB6 expression but also identified the relationship of this gene with viral infections. The changes in GNBPB6 expression were quantified and showed a decrease in A. aegypti cells (Aag2 cells) at 2 dpi and 3 dpi and an increase at 4 dpi and 5 dpi (p < 0.05). A significant increase was observed only at 5 dpi after DENV2 infection. Subsequently, a GNBPB6 knockout (KO) cell line was constructed using the CRISPR/Cas9 system, and the DENV2 and ZIKV RNA copies, along with cell densities, were quantified and compared between the KO and wild type (WT) cells at different dpi. The result showed that DENV2 and ZIKV RNA copies were significantly increased in the KO cell line with no significant change in cell growth. Finally, DENV2 copies decreased after GNBPB6 was complemented in the KO. In conclusion, GNBPB6 knockout and complementation in Aag2 cells revealed that GNBPB6 can inhibit the replication of both DENV2 and ZIKV. These results contribute to subsequent research on mosquito-virus interactions.

3.
J Atheroscler Thromb ; 31(4): 396-418, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030236

RESUMO

AIMS: Past observational studies have reported on the association between antipsychotic drugs and venous thromboembolism (VTE); however, the conclusions remain controversial, and its mechanisms are yet to be fully understood. Thus, in this study, we aim to determine the associations of antipsychotic drugs with VTE, including deep vein thrombosis (DVT) and pulmonary embolism (PE), and their potential mechanisms. METHODS: We first mined the adverse event signals of VTE, DVT, and PE caused by antipsychotic drugs in Food and Drug Administration Adverse Event Reporting System (FAERS). Next, we used two-sample Mendelian randomization (MR) method to investigate the association of antipsychotic drug target gene expression with VTE, DVT, and PE, using single-nucleotide polymorphisms as genetic instruments. We not only used the expression of all antipsychotic drug target genes as exposure to perform MR analyses but also analyzed the effect of single target gene expression on the outcomes. RESULTS: In the FAERS, 1694 cases of VTE events were reported by 16 drugs. However, using the MR approach, no significant association was determined between the expression of all antipsychotic target genes and VTE, DVT, or PE, either in blood or brain tissue. Although the analysis of single gene expression data showed that the expression of nine genes was associated with VTE events, these targets lacked significant pharmacological action. CONCLUSIONS: Adverse event mining results have supported the claim that antipsychotic drugs can increase the risk of VTE. However, we failed to find any genetic evidence for this causal association and potential mechanisms. Thus, vigilance is still needed for antipsychotic drug-related VTE despite the limited supporting evidence.


Assuntos
Antipsicóticos , Embolia Pulmonar , Tromboembolia Venosa , Estados Unidos , Humanos , Tromboembolia Venosa/induzido quimicamente , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/genética , Antipsicóticos/efeitos adversos , Análise da Randomização Mendeliana , United States Food and Drug Administration , Embolia Pulmonar/induzido quimicamente , Embolia Pulmonar/genética , Mineração de Dados
4.
Front Oncol ; 13: 1168995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954080

RESUMO

Purpose: This study aims to develop and validate a model predictive for the incidence of grade 4 radiation-induced lymphopenia (G4RIL), based on dosiomics features and radiomics features from the planning CT of nasopharyngeal carcinoma (NPC) treated by radiation therapy. Methods: The dataset of 125 NPC patients treated with radiotherapy from August 2018 to March 2019 was randomly divided into two sets-an 85-sample training set and a 40-sample test set. Dosiomics features and radiomics features of the CT image within the skull bone and cervical vertebrae were extracted. A feature selection process of multiple steps was employed to identify the features that most accurately forecast the data and eliminate superfluous or insignificant ones. A support vector machine learning classifier with correction for imbalanced data was trained on the patient dataset for prediction of RIL (positive classifier for G4RIL, negative otherwise). The model's predictive capability was gauged by gauging its sensitivity (the likelihood of a positive test being administered to patients with G4RIL) and specificity in the test set. The area beneath the ROC curve (AUC) was utilized to explore the association of characteristics with the occurrence of G4RIL. Results: Three clinical features, three dosiomics features, and three radiomics features exhibited significant correlations with G4RIL. Those features were then used for model construction. The combination model, based on nine robust features, yielded the most impressive results with an ACC value of 0.88 in the test set, while the dosiomics model, with three dosiomics features, had an ACC value of 0.82, the radiomics model, with three radiomics features, had an ACC value of 0.82, and the clinical model, with its initial features, had an ACC value of 0.6 for prediction performance. Conclusion: The findings show that radiomics and dosiomics features are correlated with the G4RIL of NPC patients. The model incorporating radiomics features and dosiomics features from planning CT can predict the incidence of G4RIL in NPC patients.

5.
J Transl Med ; 21(1): 11, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624463

RESUMO

BACKGROUND: Radiotherapy (RT) is the standard treatment for nasopharyngeal carcinoma (NPC). However, due to individual differences in radiosensitivity, biomarkers are needed to tailored radiotherapy to cancer patients. However, comprehensive genome-wide radiogenomic studies on them are still lacking. The aim of this study was to identify genetic variants associated with radiotherapy response in patients with NPC. METHODS: This was a large­scale genome-wide association analysis (GWAS) including a total of 981 patients. 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant loci were further genotyped using MassARRAY system and TaqMan SNP assays in the validation stages of 847 patients. This study used logistic regression analysis and multiple bioinformatics tools such as PLINK, LocusZoom, LDBlockShow, GTEx, Pancan-meQTL and FUMA to examine genetic variants associated with radiotherapy efficacy in NPC. RESULTS: After genome-wide level analysis, 19 SNPs entered the validation stage (P < 1 × 10- 6), and rs11130424 ultimately showed statistical significance among these SNPs. The efficacy was better in minor allele carriers of rs11130424 than in major allele carriers. Further stratified analysis showed that the association existed in patients in the EBV-positive, smoking, and late-stage (III and IV) subgroups and in patients who underwent both concurrent chemoradiotherapy and induction/adjuvant chemotherapy. CONCLUSION: Our study showed that rs11130424 in the CACNA2D3 gene was associated with sensitivity to radiotherapy in NPC patients. TRIAL REGISTRATION NUMBER: Effect of genetic polymorphism on nasopharyngeal carcinoma chemoradiotherapy reaction, ChiCTR-OPC-14005257, Registered 18 September 2014, http://www.chictr.org.cn/showproj.aspx?proj=9546 .


Assuntos
Canais de Cálcio , Estudo de Associação Genômica Ampla , Neoplasias Nasofaríngeas , Humanos , Quimiorradioterapia , Variação Genética , Genótipo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Canais de Cálcio/genética
7.
Front Plant Sci ; 13: 979540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570946

RESUMO

Wheat is one of the most important food crops in the world and is considered one of the top targets in crop biotechnology. With the high-quality reference genomes of wheat and its relative species and the recent burst of genomic resources in Triticeae, demands to perform gene functional studies in wheat and genetic improvement have been rapidly increasing, requiring that production of transgenic wheat should become a routine technique. While established for more than 20 years, the particle bombardment-mediated wheat transformation has not become routine yet, with only a handful of labs being proficient in this technique. This could be due to, at least partly, the low transformation efficiency and the technical difficulties. Here, we describe the current version of this method through adaptation and optimization. We report the detailed protocol of producing transgenic wheat by the particle gun, including several critical steps, from the selection of appropriate explants (i.e., immature scutella), the preparation of DNA-coated gold particles, and several established strategies of tissue culture. More importantly, with over 20 years of experience in wheat transformation in our lab, we share the many technical details and recommendations and emphasize that the particle bombardment-mediated approach has fewer limitations in genotype dependency and vector construction when compared with the Agrobacterium-mediated methods. The particle bombardment-mediated method has been successful for over 30 wheat genotypes, from the tetraploid durum wheat to the hexaploid common wheat, from modern elite varieties to landraces. In conclusion, the particle bombardment-mediated wheat transformation has demonstrated its potential and wide applications, and the full set of protocol, experience, and successful reports in many wheat genotypes described here will further its impacts, making it a routine and robust technique in crop research labs worldwide.

8.
Biomater Sci ; 11(1): 341, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36484328

RESUMO

Correction for 'Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites' by Hong Yang et al., Biomater. Sci., 2017, 5, 1001-1013, https://doi.org/10.1039/c7bm00043j.

9.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230590

RESUMO

Data from 758 patients with lung adenocarcinoma were retrospectively collected. All patients had undergone computed tomography imaging and EGFR gene testing. Radiomic features were extracted using the medical imaging tool 3D-Slicer and were combined with the clinical features to build a machine learning prediction model. The high-dimensional feature set was screened for optimal feature subsets using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO). Model prediction of EGFR mutation status in the validation group was evaluated using multiple classifiers. We showed that six clinical features and 622 radiomic features were initially collected. Thirty-one radiomic features with non-zero correlation coefficients were obtained by LASSO regression, and 24 features correlated with label values were obtained by PCA. The shared radiomic features determined by these two methods were selected and combined with the clinical features of the respective patient to form a subset of features related to EGFR mutations. The full dataset was partitioned into training and test sets at a ratio of 7:3 using 10-fold cross-validation. The area under the curve (AUC) of the four classifiers with cross-validations was: (1) K-nearest neighbor (AUCmean = 0.83, Acc = 81%); (2) random forest (AUCmean = 0.91, Acc = 83%); (3) LGBM (AUCmean = 0.94, Acc = 88%); and (4) support vector machine (AUCmean = 0.79, Acc = 83%). In summary, the subset of radiographic and clinical features selected by feature engineering effectively predicted the EGFR mutation status of this NSCLC patient cohort.

10.
Mol Cancer ; 21(1): 169, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999636

RESUMO

BACKGROUND: Genetic variants associated with acute side effects of radiotherapy in nasopharyngeal carcinoma (NPC) remain largely unknown. METHODS: We performed a two-stage genome-wide association analysis including a total of 1084 patients, where 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant variants were then validated in an independent cohort of 765 patients using the MassARRAY system. Gene mapping, linkage disequilibrium, genome-wide association analysis, and polygenic risk score were conducted or calculated using FUMA, LDBlockShow, PLINK, and PRSice software programs, respectively. RESULTS: Five SNPs (rs6711678, rs4848597, rs4848598, rs2091255, and rs584547) showed statistical significance after validation. Radiotherapy toxicity was more serious in mutant minor allele carriers of all five SNPs. Stratified analysis further indicated that rs6711678, rs4848597, rs4848598, and rs2091255 correlated with skin toxicity in patients of EBV positive, late stage (III and IV), receiving both concurrent chemoradiotherapy and induction/adjuvant chemotherapy, and with OR values ranging from 1.92 to 2.66. For rs584547, high occurrence of dysphagia was found in A allele carriers in both the discovery (P = 1.27 × 10- 6, OR = 1.55) and validation (P = 0.002, OR = 4.20) cohorts. Furthermore, prediction models integrating both genetic and clinical factors for skin reaction and dysphagia were established. The area under curve (AUC) value of receiver operating characteristic (ROC) curves were 0.657 (skin reaction) and 0.788 (dysphagia). CONCLUSIONS: Rs6711678, rs4848597, rs4848598, and rs2091255 on chromosome 2q14.2 and rs584547 were found to be novel risk loci for skin toxicity and dysphagia in NPC patients receiving radiotherapy. TRIAL REGISTRATION: Chinese Clinical Trial Register (registration number: ChiCTR-OPC-14005257 and CTXY-140007-2).


Assuntos
Transtornos de Deglutição , Neoplasias Nasofaríngeas , Quimiorradioterapia , Transtornos de Deglutição/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapia
11.
Mater Today Bio ; 14: 100288, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35647513

RESUMO

Therapeutic approaches of combining conventional photodynamic therapy (PDT) with other adjuvant treatments to sensitize PDT represent an appealing strategy. Herein, a novel synergetic "nanobomb" strategy based on glutathione (GSH)-responsive biodegradation was proposed to effectively destroy tumors expeditiously and accurately. This "nanobomb" was rationally constructed via the simultaneous encapsulation of methylene blue (MB) and l-arginine (L-Arg) into polyethylene glycol (PEG) modified mesoporous organosilicon nanoparticles (MON). The resulting L-Arg/MB@MP initially exhibited prolonged blood circulation, improved bioavailability, and enhanced tumor accumulation in mice after tail vein injection according to the pharmacokinetic investigations, before the nanoparticles were entirely excreted. Under laser irradiation, L-Arg/MB@MP produced remarkable reactive oxygen species (ROS) directly for PDT therapy, while a portion of ROS may oxidize L-Arg to generate nitric oxide (NO) not only for gas therapy (GT) but also serve as a biological messenger to regulate vasodilation to alleviate the tumor hypoxia. Subsequently, the rapidly released NO was further oxidized to reactive nitrogen species, which together with ROS promote immunogenic cell death by inducing G2/M cell-cycle arrest and apoptosis in cancer cells, and eventually resulting in enhanced anti-tumor immune responses. Moreover, the GSH depletion in tumor tissues induced by L-Arg/MB@MP biodegradation can cooperate with GT to amplify the therapeutic effect of PDT. These results demonstrate that this "nanobomb" provides new ideas for clinical translation to treat tumor patients in terms of synergistic PDT-GT nanotherapy in hypoxic-solid tumors.

12.
Plant Physiol ; 190(1): 421-440, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35695786

RESUMO

Adapting to unfavorable environments is a necessary step in plant terrestrialization and radiation. The dehydration-responsive element-binding (DREB) protein subfamily plays a pivotal role in plant abiotic stress regulation. However, relationships between the origin and expansion of the DREB subfamily and adaptive evolution of land plants are still being elucidated. Here, we constructed the evolutionary history of the DREB subfamily by compiling APETALA2/ethylene-responsive element-binding protein superfamily genes from 169 representative species of green plants. Through extensive phylogenetic analyses and comparative genomic analysis, our results revealed that the DREB subfamily diverged from the ethylene-responsive factor (ERF) subfamily in the common ancestor of Zygnemophyceae and Embryophyta during the colonization of land by plants, followed by expansions to form three different ancient archetypal genes in Zygnemophyceae species, designated as groups archetype-I, archetype-II/III, and archetype-IV. Four large-scale expansions paralleling the evolution of land plants led to the nine-subgroup divergence of group archetype-II/III in angiosperms, and five whole-genome duplications during Brassicaceae and Poaceae radiation shaped the diversity of subgroup IIb-1. We identified a Poaceae-specific gene in subgroup IIb-1, ERF014, remaining in a Poaceae-specific microsynteny block and co-evolving with a small heat shock protein cluster. Expression analyses demonstrated that heat acclimation may have driven the neofunctionalization of ERF014s in Pooideae by engaging in the conserved heat-responsive module in Poaceae. This study provides insights into lineage-specific expansion and neofunctionalization in the DREB subfamily, together with evolutionary information valuable for future functional studies of plant stress biology.


Assuntos
Proteínas de Transporte , Desidratação , Proteínas de Transporte/metabolismo , Desidratação/genética , Etilenos , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética
13.
Bioact Mater ; 16: 107-119, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35386322

RESUMO

The clinical outcomes of cancer nanovaccine have been largely impeded owing to the low antigen-specific T cell response rate and acquired resistance caused by the immunosuppressive tumor microenvironment (TME). Here, we reported a tumor acidity-responsive nanovaccine to remodel the immunosuppressive TME and expand the recruitment of tumor infiltrating lymphocytes (TILs) using hybrid micelles (HM), which encapsulated colony stimulating factor 1 receptor (CSF1-R) inhibitor BLZ-945 and indoleamine 2,3-dioxygenase (IDO) inhibitor NLG-919 in its core and displayed a model antigen ovalbumin (OVA) on its surface (denoted as BN@HM-OVA). The bioactive nanovaccine is coated with a polyethylene glycol (PEG) shell for extending nanoparticle circulation. The shell can be shed in response to the weakly acidic tumor microenvironment. The decrease in size and the increase in positive charge may cause the deep tumor penetration of drugs. We demonstrated that the bioactive nanovaccine dramatically enhance antigen presentation by dendritic cells (DCs) and drugs transportation into M1-like tumor-associated macrophages (TAMs) and tumor cells via size reduction and increasing positive charge caused by the weakly acidic TME. Such bioactive nanovaccine could remodel the immunosuppressive TME into an effector T cells favorable environment, leading to tumor growth inhibition in prophylactic and therapeutic E.G7-OVA tumor models. Furthermore, combining the bioactive nanovaccine with simultaneous anti-PD-1 antibody treatment leads to a long-term tumor inhibition, based on the optimal timing and sequence of PD-1 blockade against T cell receptor. This research provides a new strategy for the development of efficient cancer immunotherapy.

14.
Adv Healthc Mater ; 11(6): e2101375, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981675

RESUMO

Interleukin-12 (IL12) is a pleiotropic cytokine with promising prospects for cancer immunotherapy. Though IL12 gene-based therapy can overcome the fatal hurdle of severe systemic toxicity, targeted delivery and tumor-located expression of IL12 gene remain the challenging issues yet to be solved. Photo-immunotherapy emerging as a novel and precise therapeutic strategy, which elaborately combines immune-activating agents with light-triggered photosensitizers for potentiated anticancer efficacy. Herein, an engineered stem cell-based biotherapy platform (MB/IL12-MSCs) incorporating immune gene plasmid IL12 (pIL12) and photosensitizer methylene blue (MB) is developed to realize tumor-homing delivery of therapeutic agents and photo-immunotherapy efficacy enhancement. The biotherapy platform retained tumor-tropic migration and penetration functions, which improved the intratumoral distribution of therapeutic agents, thereby promoting photodynamic effects and reinforcing immune responses. Importantly, MB/IL12-MSCs restricted the expression and distribution of IL12 at tumor site, which minimized potential toxicity while eliciting sufficient anticancer immunity. In noteworthy, activation of immunity induced by MB/IL12-MSCs established long-term systemic immunologic memory to prevent tumor relapse. The MB/IL12-MSCs outperform their monotherapy counterparts in breast tumor models, and the growth of tumor significantly arrested as well as re-challenging abscopal tumor growth slowdown. Collectively, this work reveals that MSCs-based strategy may advance more efficient, durable, and safer cancer photo-immunotherapy.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Imunoterapia , Interleucina-12/genética , Interleucina-12/metabolismo , Células-Tronco Mesenquimais/metabolismo
15.
ACS Nano ; 15(10): 16683-16696, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34586789

RESUMO

The combination of magnetic hyperthermia and chemotherapy within a nanosystem is thought to be a promising approach for cancer therapies. However, the nonspecific accumulation and fast clearance of magnetic nanoparticles in the physiological environment limited their further biomedical applications. Herein, we report a highly selective theranostic nanocomplex, ZIPP-Apt:DOX/siHSPs, built with superparamagnetic zinc-doped iron oxide nano-octahedral core, cationic PAMAM dendrimer, and functional surface modifications such as PEG, AS1411 aptamer, and fluorescent tags (FITC or Cy5.5), together with the loading of hydrophobic anticancer drug doxorubicin (DOX) and HSP70/HSP90 siRNAs. Our results demonstrate that the cellular uptake and the tumor-specific accumulation of ZIPP-Apt:DOX/siHSPs were significantly increased due to the AS1411-nucleolin affinity and further confirmed that the simultaneous depletion of HSP70 and HSP90 sensitized magnetic hyperthermia and chemotherapy-induced cell death both in vitro and in vivo. Altogether, our study provides a theranostic nanoplatform for aptamer-targeted, NIR/MR dual-modality imaging guided, and HSP70/HSP90 silencing sensitized magnetochemotherapy, which has the potential to advance versatile magnetic nanosystems toward clinical applications.


Assuntos
Dendrímeros , Nanopartículas , Preparações Farmacêuticas , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Medicina de Precisão , Nanomedicina Teranóstica
16.
Int J Hyperthermia ; 38(1): 1304-1312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34468276

RESUMO

BACKGROUND: Several studies have reported the combination of intracavity or cervical lymph node hyperthermia with chemoradiotherapy (CRT) to improve clinical outcomes in nasopharyngeal carcinoma (NPC), but the combination with whole-body hyperthermia (WBH) for treating NPC is unexplored. We aimed to assess the efficacy of the combination of radiotherapy, chemotherapy and WBH in patients with locoregionally advanced NPC. METHODS: Between July 2008 and November 2012, 239 newly diagnosed NPC patients were enrolled in a pre-propensity score-matched cohort, including 193 patients who received CRT (CRT group) and 46 who underwent CRT with WBH (HCRT group). The feasibility and clinical outcomes of both groups were evaluated and toxicities assessed. Survival rates were assessed using the Kaplan-Meier method, log-rank test and Cox regression. RESULTS: Following propensity score matching, 46 patients from each group were included. The 5-year overall survival (OS) rates were 65.2% in the CRT group and 80.3% in the HCRT group (p=.027). In contrast, the other survival outcomes at 5 years were similar between the groups: locoregional recurrence-free survival (LRRFS), 74.7% vs. 87.6% (p=.152); distant metastasis-free survival (DMFS), 67.4% vs. 77.9% (p=.125); and progression-free survival (PFS), 53.1% vs. 69.2% (p=.115). In the multivariate analyses, the only two independent predictors of OS were clinical stage and HCRT. CONCLUSIONS: These results suggest that WBH, when combined with CRT, can improve the OS of patients with advanced NPC.


Assuntos
Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Quimiorradioterapia , Humanos , Hipertermia , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Pontuação de Propensão , Estudos Retrospectivos
17.
Free Radic Biol Med ; 172: 590-603, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34242793

RESUMO

Tumor microenvironments are characterized not only in terms of chemical composition, but also by physical properties such as stiffness, which influences morphology, proliferation, and fate of tumor cells. However, the underlying mechanisms between matrix stiffness and the apoptosis-autophagy balance remain largely unexplored. In this study, we cultured human breast cancer MDA-MB-231 cells on rigid (57 kPa), stiff (38 kPa) or soft (10 kPa) substrates and demonstrated that increasing autophagy levels and autophagic flux in the cells cultured on soft substrates partly attenuated soft substrate-induced apoptosis. Mechanistically, this protective autophagy is regulated by intracellular reactive oxygen species (ROS) accumulation, which triggers the downstream signals of JNK, Bcl-2 and Beclin-1. More importantly, soft substrate-induced activation of ROS/JNK signaling promotes cell apoptosis through the mitochondrial pathway, whereas it increases protective autophagy by suppressing the interaction of Bcl-2 and Beclin-1. Taken together, our data suggest that JNK is the mediator of soft substrate-induced breast cancer cell apoptosis and autophagy which is likely to be the mechanism that partly attenuates mitochondrial apoptosis. This study provides new insights into the molecular mechanism by which autophagy plays a protective role against soft substrate-induced apoptosis in human breast cancer cells.


Assuntos
Neoplasias da Mama , Sistema de Sinalização das MAP Quinases , Apoptose , Autofagia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio , Microambiente Tumoral
18.
Biomaterials ; 275: 120990, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34186239

RESUMO

The exploration of an intelligent multifunctional imaging-guided therapeutic platform is of great significance because of its ideal delivery efficiency and controlled release. In this work, a tumor microenvironment (TME)-responsive nanocarrier (denoted as MB@MSP) is designed for on-demand, sequentially release of a short D-peptide antagonist of programmed cell death-ligand 1 (named as PDPPA-1) and a photosensitizer methylene blue (MB). Fe3O4-Au located in the core of MB@MSP is used as a magnetic resonance imaging and micro-computed tomography imaging contrast agent for noninvasive diagnosis of solid tumors and simultaneous monitoring of drug delivery. The PDPPA-1 coated on MB@MSP can be shed due to the cleavage of the peptide substrate by matrix metalloproteinase-2 (MMP-2) that is highly expressed in the tumor stroma, and disulfide bonding is further broken when it encounters high levels of glutathione (GSH) in TME, which finally leads to significant size reduction and charge-reversal. These transitions facilitate penetration and uptake of nanocarriers against tumors. Noticeably, the released PDPPA-1 can block the immune checkpoint to create an environment that favors the activation of cytotoxic T lymphocytes and augment the antitumor immune response elicited by photodynamic therapy, thus significantly improving therapeutic outcomes. Studies of the underlying mechanisms suggest that the designed MMP-2 and GSH-sensitive delivery system not only induce apoptosis of tumor cells but also modulate the immunosuppressive tumor microenvironment to eventually augment the suppression tumor metastasis effect of CD8+ cytotoxic T cells. Overall, the visualization of the therapeutic processes with comprehensive information renders MB@MSP an intriguing platform to realize the combined treatment of metastatic tumors.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Metaloproteinase 2 da Matriz , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Microtomografia por Raio-X
19.
Front Immunol ; 12: 625808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841409

RESUMO

B7 family members and their receptors play key roles in regulating T cell responses, and constitute very attractive targets for developing immunotherapeutic drugs. V-Set and Immunoglobulin domain containing 3 (VSIG3), a ligand for the novel B7 family immune checkpoint V-domain immunoglobulin suppressor of T cell activation (VISTA), can significantly inhibit T cell functions. Inhibitors targeting the VISTA/VSIG3 pathway are of great significance in tumor immunology. Here, we show the crystal structure of the extracellular domain (ECD) of the human VSIG3 protein at 2.64 angstrom resolution, and we produce recombinant human VSIG-3 ECD in both CHO cells and E. coli. Furthermore, we demonstrated the interaction of VISTA and VSIG3 by coimmunoprecipitation (Co-IP). Based on protein-protein docking for VISTA and VSIG3, we report a small molecule inhibitor of VSIG3 K284-3046 and evaluate its biological activities in vitro. This study was the first to reveal the crystal structure of VSIG3, and provides the structural basis for designing antibodies or compounds for the unique VSIG3/VISTA coinhibitory pathway in the treatment of cancers, autoimmune diseases and may be beneficial of designing vaccines.


Assuntos
Antígenos B7/metabolismo , Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Animais , Antígenos B7/química , Antígenos B7/genética , Células CHO , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Proliferação de Células/efeitos dos fármacos , Cricetulus , Cristalografia por Raios X , Citocinas/metabolismo , Desenho de Fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ligantes , Ativação Linfocitária/efeitos dos fármacos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
20.
Br J Pharmacol ; 178(6): 1445-1458, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450048

RESUMO

BACKGROUND AND PURPOSE: The protein V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a novel immune-checkpoint molecule that belongs to the B7 family and regulates a broad spectrum of immune responses. So far, low MW compounds targeting VISTA for the treatment of autoimmune diseases or inflammation, have not been identified. EXPERIMENTAL APPROACH: We developed a homology modelling for VISTA 3D structure and subsequent virtual screening for low MW ligands binding to VISTA. Visualization of the binding postures of docked ligands with protein VISTA indicated that compound M351-0056 targeted VISTA. The biological activities of compound M351-0056 targeting VISTA were investigated in vitro using monocytes and T cells and in vivo, using mice with imiquimod-induced dermatitis. KEY RESULTS: The KD value of M351-0056 for human VISTA-extracellular domain was 12.60 ± 3.84 µM as assessed by microscale thermophoresis. M351-0056 decreased cytokine secretion from PBMCs or human CD4+ T cells, suppressed proliferation of PBMCs and enhanced expression of Foxp3+ T cells. These effects of M351-0056 modulating VISTA involved the JAK2-STAT2 pathway. Daily administration of M351-0056 ameliorated imiquimod-induced psoriasis-like dermatitis. Expression of mRNA and protein of inflammatory cytokines in psoriatic lesions was decreased after M351-0056 treatment. CONCLUSION AND IMPLICATIONS: The compound M351-0056 showed high affinity for VISTA and may modulate its immune function in vitro and in vivo. Our finding provides a lead compound for therapeutically enhancing VISTA-mediated pathways to benefit the treatment of autoimmune diseases or inflammation.


Assuntos
Dermatite/genética , Proteínas de Checkpoint Imunológico , Ativação Linfocitária , Proteínas de Membrana/antagonistas & inibidores , Animais , Citocinas , Imiquimode , Inflamação , Ligantes , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...