Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Technol ; : 1-10, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973186

RESUMO

Denitrification and anaerobic ammonium oxidation (anammox) are the key processes to quantitatively remove nitrate (NO3-) and balance the nitrogen (N) budget of the ecosystem. In this paper, a slurry-based 15N tracer approach was used to study the correlation and quantitative relation of substrate consumption and pH with rates of denitrification and anammox in a riparian zone. The results showed that the fastest rates of 0.93 µg N h-1 and 0.32 µg N h-1 for denitrification (Denitrif-N2) and anammox (Denitrif-N2), respectively. N2 produced by denitrification occupied 74.04% and produced by anammox occupied 25.96% of the total N2, proving denitrification is the dominant process to remove NO3-. The substrate content (NO3-, NH4+ and TOC) and pH varied during incubation and were significantly correlated with Dentrif-N2 and Anammox-N2. Nitrate and TOC as the substrates of denitrification demonstrated a significant correlation with Anammox-N2, which was associated with the products of denitrification involved in the anammox process. This proved a coupling of denitrification and anammox. A quantitative relationship was observed between Dentrif-N2 and Anammox-N2 in the range of 2.75-2.90 when TOC, NH4+ and NO3- consumption per unit mass or pH changed per unit. Nitrogen mass balance analysis showed that 1 mg N substrate (NO3-+NH4+) consumption in the denitrification and anammox can produce 1.05 mg N2 with a good linear relationship (r2 = 0.9334). This could be related to other processes that produced extra N2 in denitrification and anammox system.

3.
Phys Rev Lett ; 117(2): 025002, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447512

RESUMO

The first spherical hohlraum energetics experiment is accomplished on the SGIII-prototype laser facility. In the experiment, the radiation temperature is measured by using an array of flat-response x-ray detectors (FXRDs) through a laser entrance hole at four different angles. The radiation temperature and M-band fraction inside the hohlraum are determined by the shock wave technique. The experimental observations indicate that the radiation temperatures measured by the FXRDs depend on the observation angles and are related to the view field. According to the experimental results, the conversion efficiency of the vacuum spherical hohlraum is in the range from 60% to 80%. Although this conversion efficiency is less than the conversion efficiency of the near vacuum hohlraum on the National Ignition Facility, it is consistent with that of the cylindrical hohlraums used on the NOVA and the SGIII-prototype at the same energy scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...