Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 272: 125819, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417372

RESUMO

Live food-borne pathogens, featured with rapid proliferative capacity and high pathogenicity, pose an emerging food safety and public health crisis. The high-sensitivity detection of pathogens is particularly imperative yet remains challenging. This work developed a functionalized nylon swab array with enhanced affinity for Salmonella typhimurium (S.T.) for high-specificity ATP bioluminescence-based S.T. detection. In brief, the nylon swabs (NyS) were turned to N-methylation nylon (NyS-OH) by reacting with formaldehyde, and NyS-OH were further converted to NyS-CA by reacting with carboxylic groups of citric acid (CA) and EDC/NHS solution, for altering the NyS surface energy to favor biomodification. The antibody-immobilized nylon swab (MNyS-Ab) was ready for S.T.-specific adsorption. Three prepared MNyS-Ab were installed on a stirrer to form an MNyS-Ab array, allowing for on-site enrichment of S.T. through absorptive extraction. The enriched S.T. was quantified by measuring the bioluminescence of ATP released from cell lysis utilizing a portable ATP bioluminescence sensor. The bioassay demonstrated a detectable range of 102-107 CFU mL-1 with a detection limit (LOD) of 8 CFU/mL within 35 min. The signal of single MNyS-Ab swabs was 500 times stronger than the direct detection of 106 CFU/mL S.T. The MNyS-Ab array exhibited a 100-fold increase in extraction level compared to a single MNyS. This combination of a portable bioluminescent sensor and modified nylon swab array offers a novel strategy for point-of-care testing of live S.T. strains. It holds promise for high-sensitivity measurements of other pathogens and viruses.


Assuntos
Nylons , Salmonella typhimurium , Anticorpos , Manejo de Espécimes , Trifosfato de Adenosina
2.
Anal Chem ; 95(5): 2750-2756, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36599406

RESUMO

Three-dimensional (3D) cell culture, even as a simple microspheroid model, can be used to recapitulate the native biological microenvironment of cells. Examining the biochemical characteristics of cells in multicellular hydrogel microspheroids using microsensors is usually limited to monitoring the medium around the microspheroids. Here, functional liquid crystal (LC) core/hydrogel shell microcapsules loaded with cells were prepared using droplet microfluidic technology for monitoring live cells in a 3D microenvironment. These microcapsules have a distinctive core/shell structure; cells can be cultured in the hydrogel shell of this 3D model. The functional LC core responds to the acidic microenvironment of cells, showing an axial-to-bipolar transfiguration. 3D cell culture and visual monitoring of the cell microenvironment can be simultaneously achieved in a single microcapsule. Therefore, this novel method may enable a standard approach for monitoring multiple ions or molecules in a 3D model of the cell microenvironment.


Assuntos
Hidrogéis , Cristais Líquidos , Hidrogéis/química , Cápsulas , Técnicas de Cultura de Células/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...