Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 10(26): 12223-12240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204339

RESUMO

Rationale: Many viral infections are known to activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway. However, the role of p38 activation in viral infection and the underlying mechanism remain unclear. The role of virus-hijacked p38 MAPK activation in viral infection was investigated in this study. Methods: The correlation of hepatitis C virus (HCV) infection and p38 activation was studied in patient tissues and primary human hepatocytes (PHHs) by immunohistochemistry and western blotting. Coimmunoprecipitation, GST pulldown and confocal microscopy were used to investigate the interaction of p38α and the HCV core protein. In vitro kinase assays and mass spectrometry were used to analyze the phosphorylation of the HCV core protein. Plaque assays, quantitative real time PCR (qRT-PCR), western blotting, siRNA and CRISPR/Cas9 were used to determine the effect of p38 activation on viral replication. Results: HCV infection was associated with p38 activation in clinical samples. HCV infection increased p38 phosphorylation by triggering the interaction of p38α and TGF-ß activated kinase 1 (MAP3K7) binding protein 1 (TAB1). TAB1-mediated p38α activation facilitated HCV replication, and pharmaceutical inhibition of p38α activation by SB203580 suppressed HCV infection at the viral assembly step. Activated p38α interacted with the N-terminal region of the HCV core protein and subsequently phosphorylated the HCV core protein, which promoted HCV core protein oligomerization, an essential step for viral assembly. As expected, SB203580 or the HCV core protein N-terminal peptide (CN-peptide) disrupted the p38α-HCV core protein interaction, efficiently impaired HCV assembly and impeded normal HCV replication in both cultured cells and primary human hepatocytes. Similarly, severe fever with thrombocytopenia syndrome virus (SFTSV), herpes simplex virus type 1 (HSV-1) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection also activated p38 MAPK. Most importantly, pharmacological blockage of p38 activation by SB203580 effectively inhibited SFTSV, HSV-1 and SARS-CoV-2. Conclusion: Our study shows that virus-hijacked p38 activation is a key event for viral replication and that pharmacological blockage of p38 activation is an antiviral strategy.


Assuntos
COVID-19/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , COVID-19/virologia , Chlorocebus aethiops , Ativação Enzimática , Células HEK293 , Hepatite C/patologia , Hepatite C/virologia , Hepatócitos/metabolismo , Humanos , Imidazóis/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Piridinas/farmacologia , Células Vero , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Theranostics ; 8(1): 199-211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290802

RESUMO

Rationale: HSV is one of the most widespread human viral pathogens. HSV-1 infects a large portion of the human population and causes severe diseases. The current clinical treatment for HSV-1 is based on nucleoside analogues, the use of which is limited due to drug resistance, side effects and poor bioavailability. AMPs have been identified as potential antiviral agents that may overcome these limitations. Therefore, we screened anti-HSV-1 peptides from a scorpion-derived AMP library and engineered one candidate into a histidine-rich peptide with significantly improved antiviral activity and development potential. Methods: A venomous gland cDNA library was constructed from the scorpion Euscorpiops validus in the Yunnan Province of China. Six putative AMPs were characterized from this cDNA library, and the synthesized peptides were screened via plaque-forming assays to determine their virucidal potential. Time of addition experiments according to the infection progress of HSV-1 were used to identify the modes of action for peptides of interest. The histidine-rich modification was designed based on structural analysis of peptides by a helical wheel model and CD spectroscopy. Peptide cellular uptake and distribution were measured by flow cytometry and confocal microscopy, respectively. Results: The peptide Eval418 was found to have high clearance activity in an HSV-1 plaque reduction assay. Eval418 exhibited dose-dependent and time-dependent inactivation of HSV-1 and dose-dependent inhibition of HSV-1 attachment to host cells. However, Eval418 scarcely suppressed an established HSV-1 infection due to poor cellular uptake. We further designed and modified Eval418 into four histidine-rich derivative peptides with enhanced antiviral activities and lower cytotoxicities. All of the derivative peptides suppressed established HSV-1 infections. One of these peptides, Eval418-FH5, not only had strong viral inactivation activity and enhanced attachment inhibitory activity but also had high inhibitory activity against intracellular HSV-1, which was consistent with its improved intracellular uptake and distribution as confirmed by confocal microscopy and flow cytometry. Conclusion: We successfully identified an anti-HSV-1 peptide, Eval418, from a scorpion venom peptide library and designed a histidine-rich Eval418 derivative with significantly improved potential for further development as an anti-HSV-1 drug. This successful modification can provide a design strategy to improve the bioavailability, cellular distribution and antiviral activity of peptide agents.


Assuntos
Antivirais/química , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Venenos de Escorpião/química , Escorpiões/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , China , Biblioteca de Peptídeos
3.
Exp Ther Med ; 12(4): 2709-2715, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27698776

RESUMO

The aim of the present study was to investigate the effect of cucurbitacin B on MKN-45 gastric carcinoma cells. Cell proliferation was determined using a cell counting kit-8 assay, and commercial cell cycle and apoptosis analysis kits were used to determine the cell cycle by flow cytometry. The mRNA expression of genes which mediate cell cycle checkpoints and apoptosis was detected using reverse transcription-quantitative polymerase chain reaction, and a terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to determine apoptosis rate. Western blot analysis was used to detect the protein expression levels of JAK2/STAT3 signaling pathway-associated proteins. The presented data show that cucurbitacin B significantly inhibited the proliferation of MKN-45 cells in a dose- and time-dependent manner. In accordance with these findings, cucurbitacin B blocked the progression of the cell cycle from G0/G1 to S phase, which was confirmed by the mRNA expression analysis. Cucurbitacin B treatment significantly suppressed the expression of cyclin D1, cyclin E, cyclin-dependent kinase 4 (CDK4) and CDK2, while increasing the expression of p27. Cucurbitacin B also promoted cell apoptosis, as was determined by TUNEL assay and evaluation of mRNA expression. Further experiments suggested that the beneficial effect of cucurbitacin B on blocking the proliferation and inducing the apoptosis of MKN-45 cells may have been associated with suppression of the JAK2/STAT3 signaling pathway. Thus, the present results indicate that cucurbitacin B suppresses proliferation and promoted apoptosis of MKN-45 cells, which may be mediated by inhibition of the JAK2/STAT3 signaling pathway. Cucurbitacin B therefore may warrant further investigation as a feasible therapy for gastric carcinoma.

4.
Eur J Pharmacol ; 568(1-3): 222-30, 2007 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-17553485

RESUMO

Previous studies have established that vascular endothelial growth factor (VEGF), Angiopoietin-1 (Ang1) and endothelial progenitor cells (EPCs) play important roles in neovascularization, suggesting that combination of them would be a promising therapy for ischemic diseases. So we constructed the adeno-associated virus-2 (AAV-2) vectors simultaneously encoding human VEGF(165) and Ang1 (AAV-Ang1/VEGF), and investigated the combination therapeutic effect of AAV-Ang1/VEGF with EPCs in a rabbit ischemic hindlimb model. In the present study we found that AAV-Ang1/VEGF could successfully and efficiently transfer VEGF(165) and Ang1 gene into bone marrow derived EPCs for gene therapy. Combined administration of AAV-Ang1/VEGF with EPCs had higher blood flow recovery, cellularity, capillary density and smooth muscle alpha-actin positive vessel density than administration of either of them alone. Furthermore, the strategy of pre-intramuscular injection of AAV-Ang1/VEGF followed by EPCs transplantation had a higher therapeutic effect than the strategy of transplantation of AAV-Ang1/VEGF transduced EPCs. It seemed that the former strategy may be a promising therapy for ischemic diseases.


Assuntos
Angiopoietina-1/uso terapêutico , Células Endoteliais/citologia , Terapia Genética/métodos , Isquemia/terapia , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Células da Medula Óssea/citologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Membro Posterior/irrigação sanguínea , Membro Posterior/fisiopatologia , Humanos , Isquemia/fisiopatologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Coelhos , Fluxo Sanguíneo Regional , Células-Tronco/citologia
5.
Chin Med J (Engl) ; 117(4): 562-5, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15109450

RESUMO

BACKGROUND: Ischemic disease is one of the leading causes of death in the world. In order to further study gene therapy for ischemic disease, we constructed a recombinant plasmid for co-expression of human angiopoietin-1 and vascular endothelial growth factor 165(VEGF165) gene in adeno-associated virus (AAV) gene delivery system. METHODS: Human angiopoietin 1 and VEGF165 gene were obtained using PCR. The upstream of angiopoietin 1 contained restriction enzyme site HindIII, and the downstream of angiopoietin 1 contained restriction enzyme site BamHI. The upstream of VEGF165 contained restriction enzyme site BglII, and the downstream of VEGF165 contained restriction enzyme site BamHI. Using the multiple cloning sites (MCS) in plasmid pZero++ such as BamHI, BglII, HindIII, NotI, XhoI, XbaI, SalI, BspHI, KspI and the corresponding MCS in plasmid pAAV-MCS, angiopoietin 1 and VEGF165 gene were subcloned into pAAV-MCS. RESULTS: DNA sequencing revealed that the PCR- amplified angiopoietin 1 and VEGF165 were consistent with NCBI Gene Bank. The recombinant plasmid was identified using PCR and digestion, which proved to be consistent with our hypothesis. In recombinant plasmid, angiopoietin1 and VEGF possessed a CMV promoter and polyA terminator system respectively, thus assuring co-expression of the two genes. CONCLUSION: Successful construction of AAV co-expression system for human angiopoietin 1 and VEGF165 gene will provide the foundation for gene therapy to cure severe ischemic disease.


Assuntos
Angiopoietina-1/genética , Dependovirus/genética , Vetores Genéticos/genética , Fator A de Crescimento do Endotélio Vascular/genética , Terapia Genética , Humanos , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...