Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Cardiovasc Disord ; 22(1): 422, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138345

RESUMO

Hypertrophic cardiomyopathy (HCM) is a common heritable cardiomyopath. Although considerable effort has been made to understand the pathogenesis of HCM, the mechanism of how long noncoding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network result in HCM remains unknown. In this study, we acquired a total of 520 different expression profiles of lncRNAs (DElncRNAs) and 371 messenger RNAs (mRNA, DEGs) by microarray and 33 microRNAs (DEmiRNAs) by sequencing in plasma of patients with HCM and healthy controls. Then lncRNA-miRNA pairs were predicted using miRcode and starBase and crossed with DEmiRNAs. MiRNA-mRNA pairs were retrieved from miRanda and TargetScan and crossed with DEGs. Combined with these pairs, the ceRNA network with eight lncRNAs, three miRNAs, and 22 mRNAs was constructed. lncRNA RP11-66N24.4 and LINC00310 were among the top 10% nodes. The hub nodes were analyzed to reconstruct a subnetwork. Furthermore, quantitative real-time polymerase chain reaction results showed that LINC00310 was significantly decreased in patients with HCM. For LINC00310, GO analysis revealed that biological processes were enriched in cardiovascular system development, sprouting angiogenesis, circulatory system development, and pathway analysis in the cGMP-PKG signaling pathway. These results indicate that the novel lncRNA-related ceRNA network in HCM and LINC00310 may play a role in the mechanism of HCM pathogenesis, which could provide insight into the pathogenesis of HCM.


Assuntos
Cardiomiopatia Hipertrófica , MicroRNAs , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
BMC Cardiovasc Disord ; 22(1): 278, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717150

RESUMO

Familial hypertrophic cardiomyopathy (FHCM) is an autosomal dominant inherited disease caused by mutations in genes encoding cardiac sarcomere proteins. MicroRNAs (miRNAs) play an important role in the pathogenesis of FHCM. In the present study, we aimed to determine the miRNA profile in FHCM patients with myosin-binding protein C3 (MYBPC3) gene mutations. We recruited three FHCM patients and age- and sex-matched controls. The three probands all had hypertrophic obstructive cardiomyopathy with severe myocardial hypertrophy, and two of the three had a history of sudden cardiac death, representing a "malignant" phenotype. We then compared the miRNA expression profiles of three FHCM patients carrying MYBPC3 gene mutations with those of the normal control group using miRNA sequencing technology. Differentially expressed miRNAs were verified using real-time polymerase chain reaction (qPCR). Target genes and signaling pathways of the identified differentially expressed miRNAs were predicted using bioinformatics analysis. A total of 33 significantly differentially expressed miRNAs were detected in the peripheral blood of the three probands, of which 28 were upregulated, including miR-208b-3p, and 5 were downregulated. Real-time PCR confirmed the upregulated expression of miR-208b-3p in FHCM patients (P < 0.05). Bioinformatics analysis showed that miR-208b-3p was mainly enriched in 79 target genes including UBE2V2, MED13, YBX1, CNKSR2, GATA4, andSOX5/6, et al. Gene ontology (GO) analysis of target genes showed that miR-208b was mainly involved in the processes of negative regulation of transcription from RNA polymerase II promoter, and regulation of transcription, DNA templated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the target genes regulated by miR-208b-3p were mainly involved in the Wnt signaling pathway. These findings suggest that FHCM patients with MYBPC3 gene mutations have a specific miRNA expression profile, and that miR-208b-3p is significantly upregulated in cardiac hypertrophy. Our results also indicate that miRNA-208b-3p activates the Wnt signaling pathway through its target gene to promote cardiac hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica Familiar , MicroRNAs , Cardiomegalia , Cardiomiopatia Hipertrófica Familiar/diagnóstico , Cardiomiopatia Hipertrófica Familiar/genética , Proteínas de Transporte , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Miosinas/genética , Miosinas/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...