Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1372155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572362

RESUMO

Solid acid catalysts are widely used in the field of biomass catalytic conversion owing to their advantages of low environmental pollution, easy separation and reusability. Nevertheless, there are relatively few studies on the mechanism of solid acid liquefaction for biomass. In this study, the effect of acid strength and acid amount of various solid acids on the liquefaction efficiency has been investigated using waste bamboo sawdust generated from the pulp and paper industry as the raw material. In addition, the physicochemical changes of cellulose, hemicellulose and lignin during the reaction process of bamboo sawdust have been studied, and the liquefaction mechanism of bamboo sawdust under the action of various solid acids has been concluded. As a result, the liquefaction efficiency of bamboo sawdust under the polyol system of PEG400/propanetriol is mainly related to the acid strength of the solid acid, and the greater the acid strength of the solid acid, the better the catalytic effect on the bamboo sawdust, in which the residual amount of bamboo sawdust liquefaction catalyzed by the SPA catalyst is only 17.72%. Noteworthy, the most difficult component to liquefy is the crystallization of natural cellulose I into cellulose II during the reaction process, which is the primary obstacle to the complete liquefaction of bamboo sawdust by solid acid. Overall, these findings are valuable for the high value utilization of waste bamboo sawdust in the pulp and paper industry, as well as the application of solid acid catalytic technology for biomass.

2.
Bioresour Technol ; 395: 130400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286169

RESUMO

The rational use of bamboo to make dissolving pulp can offer up new opportunities for cellulose production, alleviating wood scarcity. Bamboo contains a high content of non-fiber cells, which presents technical challenges in dissolving pulp production by the conventional process. In this study, a process concept of separating hemicelluloses is presented by fiber fractionation and purification for cleaner production of bamboo dissolving pulp: bamboo kraft pulp was fractionated into long-fiber and short-fiber fractions. The cellulose-rich long-fiber fraction was converted to dissolving pulp by further purification treatment with acid hydrolysis and cold caustic extraction. The hemicellulose-rich short-fiber fraction was used for papermaking. The laboratory results were confirmed by those from mill trials. The combined pulp yield (dissolving pulp + paper-grade pulp) reached 49 %, which was significantly higher than that of the conventional pre-hydrolysis kraft pulping process. Furthermore, the quality of dissolving pulp was higher due to inherently higher cellulose content of long-fiber fraction.


Assuntos
Celulose , Fracionamento Químico , Madeira , Hidrólise
3.
Int J Biol Macromol ; 256(Pt 1): 127878, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949269

RESUMO

Nowadays, great effort has been devoted to designing biomass-derived nanoscale carbon fibers with controllable fibrous morphology, high conductivity, big specific surface area and multifunctional characteristics. Herein, a green and renewable strategy is performed to prepare the biomass-based nanoscale carbon fibers for fire warning sensor, supercapacitor and moist-electric generator. This preparation strategy thoroughly gets over the dependence of petroleum-based polymeride, and effectually improves the energy storage capacity, sensing sensitivity, humidity power generation efficiency of the obtaining biomass-based carbon nanofibers. Without the introduction of any active components or pseudocapacitive materials, the specific capacitance and energy density for biomass-based nanoscale carbon fibers achieve 143.58 F/g and 19.9 Wh/kg, severally. The biomass-based fire sensor displays excellent fire resistance, stability, and flame sensitivity with a response time of 2 s. Furthermore, the biomass-based moist-electric generator shows high power generation efficiency. The output voltage and current of five series connected and parallel-connected biomass-based moist-electric generators reaches 4.30 V and 43 µA, respectively. Notably, as the number of biomass-based moist-electric generators in series or parallel increases, the overall output voltage and current of the device system have a linear relationship. This work proposes a self-powered fire prediction system based on nanoscale carbon fibers that integrates sensing, power generation, and energy storage functions.


Assuntos
Carbono , Nanofibras , Fibra de Carbono , Biomassa , Capacitância Elétrica
4.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686660

RESUMO

The ubiquitin-proteasome system is a pivotal intracellular proteolysis process in posttranslational modification. It regulates multiple cellular processes. Deubiquitinating enzymes (DUBs) are a stabilizer in proteins associated with tumor growth and metastasis. However, the link between DUBs and HNSCC remains incompletely understood. In this study, therefore, we identified USP14 as a tumor proliferation enhancer and a substantially hyperactive deubiquitinase in HNSCC samples, implying a poor prognosis prediction. Silencing USP14 in vitro conspicuously inhibited HNSCC cell proliferation and migration. Consistently, defective USP14 in vivo significantly diminished HNSCC tumor growth and lung metastasis compared to the control group. Luciferase assays indicated that HSF1 was downstream from USP14, and an evaluation of the cellular effects of HSF1 overexpression in USP14-dificient mice tumors showed that elevated HSF1 reversed HNSCC growth and metastasis predominantly through the HSF1-HSP pathway. Mechanistically, USP14 encouraged HSF1 expression by deubiquitinating and stabilizing HSF1, which subsequently orchestrated transcriptional activation in HSP60, HSP70, and HSP90, ultimately leading to HNSCC progression and metastasis. Collectively, we uncovered that hyperactive USP14 contributed to HNSCC tumor growth and lung metastasis by reinforcing HSF1-depedent HSP activation, and our findings provided the insight that targeting USP14 could be a promising prognostic and therapeutic strategy for HSNCC.

5.
Bioresour Technol ; 387: 129653, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37573979

RESUMO

The failure of hemicellulose valorization in a deep eutectic solvent (DES) pretreatment has become a bottleneck that challenges its further development. To address this issue, this study developed a DES/GVL (γ-valerolactone) biphasic system for effective hemicellulose-furfural conversion, enhanced cellulose saccharification and lignin isolation. The results indicated that the biphasic system could significantly improve the lignin removal (as high as 89.1%), 86.0% higher than the monophasic DES, accompanied by âˆ¼100% hemicellulose degradation. Notably, the GVL in the biphasic solvent restricted the condensation of hemicellulose degradation products, which as a result generated large amount of furfural in the pretreatment liquid with a yield of 68.6%. With the removal of hemicellulose and lignin, cellulose enzymatic hydrolysis yield was boosted and reached near 100%. This study highlighted that the novel DES/GVL is capable of fractionating the biomass and benefiting their individual utilization, which could provide a new biorefinery configuration for a DES pretreatment.


Assuntos
Furaldeído , Lignina , Lignina/metabolismo , Solventes Eutéticos Profundos , Biomassa , Hidrólise , Solventes , Celulose , Minerais
6.
Bioresour Technol ; 363: 127880, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36067890

RESUMO

Tandem strategy for lignin utilization with photocatalytic preoxidation and ultrasonic cavitation depolymerization was proposed. Cornstalk residual lignin from industrial bioethanol process was first photocatalytically preoxidized under visible light by g-C3N4 and WO3/g-C3N4/h-BN (WCB) photocatalysts respectively, then obtained lignin samples were characterized to confirm the preoxidation with raw lignin as a blank. During photocatalytic preoxidation, benzyl hydroxyls in lignin was transformed to carbonyls, but a certain degree of lignin degradation and condensation was observed. In comparison, WCB-catalyzed photopreoxidation was more effective. Thereafter, lignin depolymerization was achieved by ultrasonic cavitation-assisted ethanololysis under optimal conditions. Compared with the mere ultrasonic cavitation depolymerization of pristine lignin, WCB-induced photocatalytic preoxidation improved the conversion rate by 14%, the light-oil yield by 26%, and the phenolic monomer yield by 35%. In general, the reported tandem method worked very well for the enhancement of lignin depolymerization and provided a new idea for the development of lignin valorization.


Assuntos
Lignina , Ultrassom , Luz , Lignina/metabolismo , Fenóis , Polimerização
7.
Int J Clin Exp Med ; 8(8): 13716-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26550317

RESUMO

OBJECTIVE: This study aims to observe the efficacies and adverse reactions of modified vitamin programs before pemetrexed chemotherapy (second-line treatment) against epidermal growth factor receptor (EGFR) mutant wild-type lung adenocarcinoma. METHODS: 477 patients with IIIB, phase IV glomerular filtration rate (GFR) mutant-negative lung adenocarcinomas and performed pemetrexed chemotherapy were collected and divided into group A (167 cases, with modified program) and group B (310 cases, with traditional program). The modified program was: orally administrated 400 µg folic acid once per day and 1 day before the first-round pemetrexed chemotherapy, until the 21st day of the final administration of pemetrexed, and intramuscularly injected 500 µg vitamin B12 1 day before the first-round pemetrexed chemotherapy, and injected once 1 day before every round pemetrexed treatment. RESULTS: Comparison between group A and group B: mean chemotherapy cycles (4.08 vs 3.98); effectiveness rate (22.16% vs 22.90%); disease control rate (56.51% vs 55.00%); without significant difference (P > 0.05). Two groups currently all reached the median overall survival (OS). The median progression-free survival (PFS): 4.2 vs 4.1 months; OS: 12.9 vs 13.2 months, without statistical difference (P > 0.05). Such side effects between the two groups as leukopenia, neutropenia, thrombocytopenia, anemia, nausea, vomiting, diarrhea, fatigue, creatinine increasing, alanine transaminase (ALT) increasing, stomatitis, peripheral neuropathy, alopecia and rash had no significant difference (P > 0.05). CONCLUSIONS: The modified vitamin supportive treatment could ensure the efficacy, significantly simplify, facilitate the clinical application, and increase the associated toxicities, indicating that the pemetrexed-based chemotherapy did not need to be delayed because applying the vitamin supportive treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...