Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(16): 11151-11156, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38590356

RESUMO

Acute liver failure caused by hepatic ischemia reperfusion injury (HIRI) poses a severe threat to life, emphasizing the urgent need for precise and timely early diagnosis. Viscosity, a key parameter reflecting active analyte levels at the cellular level, remains underexplored in relation to HIRI. To address this gap, we have developed a groundbreaking near-infrared molecule rotator, PN, exhibiting exceptional characteristics. PN demonstrates remarkable sensitivity, with a 32-fold change in response to viscosity, ranging from PBS to glycerol solution. PN's distinctive features include maximum emission wavelength 790 nm, as well as an impressive Stokes shift 190 nm. Moreover, PN exhibits the ability to sensitively and selectively differentiate nystatin-induced viscosity changes within living cells, and can be used for the detection of viscosity changes in the HIRI mouse model. This capability enhances our understanding of cellular responses, opening avenues for potential applications within disease models. The versatility of PN extends to its potential role in guiding timely monitoring and imaging of viscosity, offering valuable insights into disease progression.

2.
Materials (Basel) ; 17(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673078

RESUMO

Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 µm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics.

3.
4.
Nat Commun ; 15(1): 1726, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409174

RESUMO

Electronic processors are reaching the physical speed ceiling that heralds the era of optical processors. Multifunctional all-optical logic gates (AOLGs) of massively parallel processing are of great importance for large-scale integrated optical processors with speed far in excess of electronics, while are rather challenging due to limited operation bandwidth and multifunctional integration complexity. Here we for the first time experimentally demonstrate a reconfigurable all-in-one broadband AOLG that achieves nine fundamental Boolean logics in a single configuration, enabled by ultrabroadband (400-4000 nm) plasmon-enhanced thermo-optical nonlinearity (TONL) of liquid-metal Galinstan nanodroplet assemblies (GNAs). Due to the unique heterogeneity (broad-range geometry sizes, morphology, assembly profiles), the prepared GNAs exhibit broadband plasmonic opto-thermal effects (hybridization, local heating, energy transfer, etc.), resulting in a huge nonlinear refractive index under the order of 10-4-10-5 within visual-infrared range. Furthermore, a generalized control-signal light route is proposed for the dynamic TONL modulation of reversible spatial-phase shift, based on which nine logic functions are reconfigurable in one single AOLG configuration. Our work will provide a powerful strategy on large-bandwidth all-optical circuits for high-density data processing in the future.

5.
Opt Express ; 32(3): 4334-4345, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297637

RESUMO

Integrated on-chip femtosecond (fs) laser optoelectronic system, with photodetector as a critical component for light-electrical signal conversion, is a long-sought-after goal for a wide range of frontier applications. However, the high laser peak intensity and complicated nanophotonic waveguide structure of on-chip fs laser are beyond the detectability and integrability of conventional photodetectors. Therefore, flexible photodetector with the response on intense fs laser is in urgent needs. Herein, we demonstrate the first (to our knowledge) two-photon absorption (TPA) flexible photodetector based on the strong TPA nonlinearity of layered hybrid perovskite (IA)2(MA)2Pb3Br10, exhibiting efficient sub-bandgap response on the infrared fs laser at 700-1000 nm. High saturation intensity up to ∼3.8 MW/cm2 is achieved. The device also shows superior current stability even after bending for 1000 cycles. This work may pave the new way for the application of flexible optoelectronics specialized in integrated fs-laser detection.

6.
Nat Commun ; 15(1): 55, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168081

RESUMO

Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose an approach and demonstrate the first turnkey Brillouin-DKS frequency comb to the best of our knowledge. Our microresonator-filtered laser design offers essential benefits, including phase insensitivity, self-healing capability, deterministic selection of the DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 µs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.

7.
RSC Adv ; 13(37): 26247-26251, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37670994

RESUMO

Acute liver injury leading to acute liver failure can be a life-threatening condition. Therefore, timely and accurate early diagnosis of the onset of acute liver injury in vivo is critical. Viscosity is one of the key parameters that can accurately reflect the levels of relevant active analytes at the cellular level. Herein, a novel near-infrared molecule rotator, DJM, was designed and synthesized. This probe exhibited a highly sensitive (461-fold from PBS solution to 95% glycerol solution) and selective response to viscosity with a maximum emission wavelength of 760 nm and a Stokes shift of 240 nm. Furthermore, DJM has exhibited a remarkable capacity to discern viscosity changes induced by nystatin in viable cells with sensitivity and selectivity and further applied in the zebrafish and mouse model of acute liver injury. Additionally, DJM may potentially offer direction for the timely observation and visualization of viscosity in more relevant disease models in the future.

8.
Anal Chem ; 95(39): 14686-14694, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37713524

RESUMO

The problem of corrosion-induced discoloration and embrittlement in silverware is a significant concern for the long-term preservation of excavated archeological silver artifacts, even after thermal restoration. The key to addressing this issue lies in the meticulous selection and evaluation of corrosion inhibitors that possess targeted corrosion inhibition capabilities. This study focuses on the evaluation of corrosion inhibitors for archeological silver artifacts using scanning electrochemical cell microscopy (SECCM) and X-ray photoelectron spectroscopy (XPS). The researchers aimed to compare the inhibition effects of four corrosion inhibitors [1,2,3-benzotriazole (BTA), 2-mercaptobenzimidazole (MBI), 2-mercaptobenzothiazole (MBT), and 2-mercaptobenzoxazole (MBO)] on a simulated Ag-Cu alloy sample and understand their mechanisms. The results showed that MBT exhibited better corrosion inhibition for microstructural regions with higher silver content due to its ability to form stable chelation structures with Ag(I). MBO exhibited better corrosion inhibition for microstructural regions with higher copper content due to its strong affinity with Cu(I). The targeted corrosion inhibition ability for the ß-phase was ranked as MBO > BTA ≈ MBI > MBT, while for the α-phase the ranking was MBT > MBO > MBI > BTA. The study demonstrated the feasibility and capabilities of SECCM in the targeted screening of corrosion inhibitors for different compositions and microstructural regions in archeological metal artifacts. This study highlights the potential of SECCM in corrosion inhibitor research for archeological metal artifacts and wider applications in metal material corrosion protection.

9.
Opt Express ; 31(5): 8428-8439, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859957

RESUMO

The flexible photodetector is viewed as a research hotspot for numerous advanced optoelectronic applications. Recent progress has manifested that lead-free layered organic-inorganic hybrid perovskites (OIHPs) are highly attractive to engineering flexible photodetectors due to the effective overlapping of several unique properties, including efficient optoelectronic characteristics, exceptional structural flexibility, and the absence of Pb toxicity to humans and the environment. The narrow spectral response of most flexible photodetectors with lead-free perovskites is still a big challenge to practical applications. In this work, we demonstrate the flexible photodetector based on a novel (to our knowledge) narrow-bandgap OIHP of (BA)2(MA)Sn2I7, with achieving a broadband response across an ultraviolet-visible-near infrared (UV-VIS-NIR) region as 365-1064 nm. The high responsivities of 28.4 and 2.0 × 10-2 A/W are obtained at 365 and 1064 nm, respectively, corresponding to detectives of 2.3 × 1010 and 1.8 × 107 Jones. This device also shows remarkable photocurrent stability after 1000 bending cycles. Our work indicates the huge application prospect of Sn-based lead-free perovskites in high-performance and eco-friendly flexible devices.

10.
Opt Lett ; 48(5): 1100-1103, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857223

RESUMO

We demonstrate a chip-based octave-spanning soliton microcomb in a whispering gallery mode microresonator platform. By fabricating a silica microdisk resonator and optimizing its dispersion with dry etching, we achieve an octave-spanning single-soliton microcomb with a repetition rate of ∼670 GHz at an optical pump power of 162.6 mW. Also, two dispersive waves at the end of the spectrum are observed to extend the comb spectral range and improve the comb power.

11.
Res Sq ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798249

RESUMO

Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose a novel approach to demonstrate the first turnkey Brillouin-DKS frequency comb. Our approach with a Chimera cavity offers essential benefits that are not attainable previously, including phase insensitivity, self-healing capability, deterministic selection of DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 µs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.

12.
Light Sci Appl ; 11(1): 296, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224184

RESUMO

Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties, and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally forbidden for the externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton's cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.

13.
Nat Commun ; 13(1): 6395, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302919

RESUMO

Dissipative Kerr soliton (DKS) frequency combs-also known as microcombs-have arguably created a new field in cavity nonlinear photonics, with a strong cross-fertilization between theoretical, experimental, and technological research. Spatiotemporal mode-locking (STML) not only adds new degrees of freedom to ultrafast laser technology, but also provides new insights for implementing analogue computers and heuristic optimizers with photonics. Here, we combine the principles of DKS and STML to demonstrate the STML DKS by developing an unexplored ultrahigh-quality-factor Fabry-Pérot (FP) mesoresonator based on graded index multimode fiber (GRIN-MMF). Complementing the two-step pumping scheme with a cavity stress tuning method, we can selectively excite either the eigenmode DKS or the STML DKS. Furthermore, we demonstrate an ultralow noise microcomb that enhances the photonic flywheel performance in both the fundamental comb linewidth and DKS timing jitter. The demonstrated fundamental comb linewidth of 400 mHz and DKS timing jitter of 500 attosecond (averaging times up to 25 µs) represent improvements of 25× and 2.5×, respectively, from the state-of-the-art. Our results show the potential of GRIN-MMF FP mesoresonators as an ideal testbed for high-dimensional nonlinear cavity dynamics and photonic flywheel with ultrahigh coherence and ultralow timing jitter.

14.
Opt Lett ; 47(19): 4921-4924, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181151

RESUMO

In this Letter, we report thermo-optic tunable and efficient second-harmonic generation (SHG) based on an X-cut periodically poled lithium niobate (PPLN) waveguide. By applying an on-chip heater with thermo-isolation trenches and combining a type-0 quasi-phase matching mechanism, we experimentally achieve a high on-chip SHG conversion efficiency of 2500-3000% W-1 cm-2 and a large tuning power efficiency of 94 pm/mW inside a single 5-mm-long straight PPLN waveguide. Our design is for energy-efficient, high-performance nonlinear applications, such as wavelength conversion, highly tunable coherent light sources, and photon-pair generation.

15.
Nano Lett ; 22(6): 2328-2333, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35254079

RESUMO

Multifunctional electronic devices that combine logic operation and data storage functions are of great importance in developing next-generation computation. The recent development of van der Waals (vdW) heterostructures based on various two-dimensional (2D) materials have brought exceptional opportunities in designing novel electronic devices. Although various 2D-heterostructure-based electronic devices have been reported, multifunctional devices that can combine logic operations and data storage functions are still quite rare. In this work, we design and fabricate a half-floating-gate field-effect transistor based on MoS2-BN-graphene vdW heterostuctures, which can be used for logic operations as a MOSFET, nonvolatile memory as a floating-gate MOSFET (FG-MOSFET), and rectification as a diode. These results could lay the foundation for various applications based on 2D vdW heterostuctures and inspire the design of next-generation computation beyond the von Neumann architecture.

16.
Phys Rev Lett ; 127(21): 213902, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860072

RESUMO

Monolithic optical parametric oscillators extend laser frequencies in compact architectures, but normally guide and circulate all pump, signal, and idler beams. Critical frequency matching is raised among these resonances, limiting operation stability and continuous tuning. Here, we develop a box resonator geometry that guides all beams but only resonates for signal. Such noncritical frequency matching enables 227 GHz continuous tuning, with sub-10 kHz linewidth and 0.43 W power at 3310 nm. Our results confirm that monolithic resonator can be effectively used as a tunable laser including midinfrared wavelength, as further harnessed with methane fine spectral measurement at MHz accuracy.

17.
Nat Commun ; 12(1): 6437, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750384

RESUMO

As a quantum material, Weyl semimetal has a series of electronic-band-structure features, including Weyl points with left and right chirality and corresponding Berry curvature, which have been observed in experiments. These band-structure features also lead to some unique nonlinear properties, especially high-order harmonic generation (HHG) due to the dynamic process of electrons under strong laser excitation, which has remained unexplored previously. Herein, we obtain effective HHG in type-II Weyl semimetal ß-WP2 crystals, where both odd and even orders are observed, with spectra extending into the vacuum ultraviolet region (190 nm, 10th order), even under fairly low femtosecond laser intensity. In-depth studies have interpreted that odd-order harmonics come from the Bloch electron oscillation, while even orders are attributed to Bloch oscillations under the "spike-like" Berry curvature at Weyl points. With crystallographic orientation-dependent HHG spectra, we further quantitatively retrieved the electronic band structure and Berry curvature of ß-WP2. These findings may open the door for exploiting metallic/semimetallic states as solid platforms for deep ultraviolet radiation and offer an all-optical and pragmatic solution to characterize the complicated multiband electronic structure and Berry curvature of quantum topological materials.

18.
Talanta ; 234: 122621, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364430

RESUMO

Altered H2S levels and intracellular viscosity have both been seen in Parkinson's disease (PD). However, how H2S and intracellular viscosity are involved in PD pathogenesis remains unknown. Herein, a dual-function fluorescent probe DF was designed and synthesized to analyze intracellular viscosity and hydrogen sulfide. It is a near-infrared fluorescence probe with improved photostability and large Stokes shift (110 nm). The probe reveals increased viscosity and hydrogen sulfide in zebrafish model of PD for the first time.


Assuntos
Sulfeto de Hidrogênio , Doença de Parkinson , Animais , Corantes Fluorescentes , Células HeLa , Humanos , Viscosidade , Peixe-Zebra
19.
Anal Chem ; 93(36): 12417-12425, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34464090

RESUMO

The cellular heterogeneity and plasticity are often overlooked due to the averaged bulk assay in conventional methods. Optical imaging-based single-cell analysis usually requires specific labeling of target molecules inside or on the surface of the cell membrane, interfering with the physiological homeostasis of the cell. Scanning electrochemical microscopy (SECM), as an alternative approach, enables label-free imaging of single cells, which still confronts the challenge that the long-time scanning process is not feasible for large-scale analysis at the single-cell level. Herein, we developed a methodology combining a programmable SECM (P-SECM) with an addressable microwell array, which dramatically shortened the time consumption for the topography detection of the micropits array occupied by the polystyrene beads as well as the evaluation of alkaline phosphatase (ALP) activity of the 82 single cells compared with the traditional SECM imaging. This new arithmetic was based on the line scanning approach, enabling analysis of over 900 microwells within 1.2 h, which is 10 times faster than conventional SECM imaging. By implementing this configuration with the dual-mediator-based voltage-switching (VSM) mode, we investigated the activity of ALP, a promising marker for cancer stem cells, in hundreds of tumor and stromal cells on a single microwell device. The results discovered that not only a higher ALP activity is presented in cancer cells but also the heterogeneous distribution of kinetic constant (kf value) of ALP activity can be obtained at the single-cell level. By directly relating large numbers of addressed cells on the scalable microfluidic device to the deterministic routing of the above SECM tip, our platform holds potential as a high-content screening tool for label-free single-cell analysis.


Assuntos
Dispositivos Lab-On-A-Chip , Análise de Célula Única , Microscopia Eletroquímica de Varredura , Imagem Óptica
20.
Opt Lett ; 46(15): 3769-3772, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329277

RESUMO

Single longitudinal mode and single polarization are basic requirements of high performance fiber lasers, while their realizations are nontrivial, owing to the long laser cavity and lack of polarization selection of ordinary optical fibers. Here, we demonstrate an all-fiber narrow-linewidth laser realized on an external high-Q fiber ring, with combined functions of single-longitude-mode selection and linewidth reduction. A single-longitude-mode laser with a high polarization extinction ratio of ∼40dB and low white frequency noise at 0.3Hz2/Hz is achieved, corresponding to a fundamental linewidth of ∼0.92Hz. Using all non-polarization fiber components and ordinary gain fiber, our scheme shows the realization of narrow-linewidth single-polarization fiber lasers in a simple and cost-effective way, promising for broadband applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...