Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 711: 135183, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32000350

RESUMO

China is the largest rice producer and consumer in the world. Accurate estimations of paddy rice planting area and rice grain production is important for feeding the increasing population in China. However, Southern China had substantial losses in paddy rice area over the last three decades in those regions where paddy rice has traditionally been produced. Several studies have shown increased paddy rice area in Northeast China. Here we document the annual dynamics of paddy rice area, gross primary production (GPP), and grain production in Northeast China (Heilongjiang, Jilin and Liaoning provinces) during 2000-2017 using agricultural statistical data, satellite images, and model simulations. Annual maps derived from satellite images show that paddy rice area in Northeast China has increased by 3.68 million ha from 2000 to 2017, which is more than the total combined paddy rice area of North Korea, South Korea, and Japan. Approximately 82% of paddy rice pixels had an increase in annual GPP during 2000-2017. The expansion of paddy rice area slowed down substantially since 2015. Annual GPP from those paddy rice fields cultivated continuously over the 18 years were moderately higher than that from other paddy rice fields, which suggested that improved management practices could increase grain production in the region. There was a strong linear relationship between annual GPP and annual rice grain production in Northeast China by province and year, which illustrates the potential of using satellite-based data-driven model to track and assess grain production of paddy rice in the region. Northeast China is clearly an emerging rice production base and plays an increasing role in crop production and food security in China. However, many challenges for the further expansion and sustainable cultivation of paddy rice in Northeast China remain.


Assuntos
Oryza , Agricultura , China , Grão Comestível , Japão , República da Coreia
3.
Nat Commun ; 11(1): 554, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992693

RESUMO

Agriculture (e.g., rice paddies) has been considered one of the main emission sources responsible for the sudden rise of atmospheric methane concentration (XCH4) since 2007, but remains debated. Here we use satellite-based rice paddy and XCH4 data to investigate the spatial-temporal relationships between rice paddy area, rice plant growth, and XCH4 in monsoon Asia, which accounts for ~87% of the global rice area. We find strong spatial consistencies between rice paddy area and XCH4 and seasonal consistencies between rice plant growth and XCH4. Our results also show a decreasing trend in rice paddy area in monsoon Asia since 2007, which suggests that the change in rice paddy area could not be one of the major drivers for the renewed XCH4 growth, thus other sources and sinks should be further investigated. Our findings highlight the importance of satellite-based paddy rice datasets in understanding the spatial-temporal dynamics of XCH4 in monsoon Asia.

4.
Sci Rep ; 6: 20880, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864143

RESUMO

Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests.


Assuntos
Algoritmos , Conservação dos Recursos Naturais/estatística & dados numéricos , Monitoramento Ambiental/métodos , Imagens de Satélites/métodos , Ásia , Biodiversidade , Biomassa , Ciclo do Carbono , Monitoramento Ambiental/instrumentação , Florestas , Sistemas de Informação Geográfica , Humanos , Imagens de Satélites/instrumentação , Estações do Ano , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...