Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30399, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726206

RESUMO

As a new type of agricultural waste block substrate utilization, the initial wet base state of the substrate culture block needs to be dried. Therefore, studying the drying mechanism of substrate culture block is critical. In this study, the substrate culture block in a dry state was taken as the research object. Based on physical and chemical properties, the internal section of the substrate culture block was characterized by scanning electron microscopy and the pore condition of the particles was quantified. The results showed that the internal pore structure was uniform and favorable for plant root growth. Based on the pore structure, pore channel modeling was constructed to investigate the distribution of the internal multiphase medium and to distinguish between channels and pore-blind channels. The applicability of the modeling was verified and discussed. By measuring the drying rate of the substrate culture block and classifying its drying stages as fast speed, constant speed, and slow speed, it is clarified that the forms of moisture existence are bound-state water and free-state water, and the moisture migration is prioritized as surface adsorption water, interparticle water, particle attached water, and capillary water. Innovate a method to quantify the change of pore space in the drying process by pore coefficient ratio to evaluate the drying quality. The results show that when the pore coefficient ratio is about 40 %, its moisture content is 20 %∼30 %, and the drying effect is best at this time. The physical drying test further confirmed the correctness of the conclusion of the drying stage division and water loss law. This study can provide a theoretical reference for the modeling study of the pore structure of the block matrix and the exploration of its drying mechanism.

2.
Biomimetics (Basel) ; 9(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392114

RESUMO

To improve wheel trafficability in soft and muddy soils such as paddy fields, a bionic walking wheel is designed based on the structural morphology and movement mode of the feet of waders living in marshes and mudflats, similar to the muddy soil of paddy fields. The bionic walking wheel adopts the arrangement of double-row wheel legs and staggered arrays to imitate the walking posture of waders. The two legs move alternately, cooperate with each other, and improve the smoothness of movement. The cam inside the bionic walking wheel is used to control the movement mode of the feet. The flippers open before touching the ground to increase the contact area and reduce sinking, and the toes bend and grip the ground while touching the ground to increase traction. Multi-rigid-body dynamics software (Adams View 2020) is used to simulate the movement of the wheel during the wading process, and the movement coordination and interference between the wheel legs are analyzed. The simulation results show that there is no interference between the parts and that the movement smoothness is good. The interaction between the bionic walking wheel and muddy soil was analyzed via coupled EDEM-ADAMS simulation, and the simulation analysis and experiments were conducted and compared with those for a common paddy wheel. The results showed that the bionic walking wheel designed in this paper improved the drawbar pull by 113.56% compared with that of a common paddy wheel and had better anti-sinking performance. By analyzing the effect of toe grip on traction, it was found that the soil under the feet can be disturbed to provide greater traction when the toe is bent downward. This study provides a reference for improving the trafficability of walking mechanisms in soft and muddy soils, such as paddy fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...