Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(10)2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37895266

RESUMO

Low-temperature germination ability (LTGA) is an important characteristic for spring sowing maize. However, few maize genes related to LTGA were confirmed, and the regulatory mechanism is less clear. Here, maize-inbred lines Ye478 and Q1 with different LTGA were used to perform transcriptome analysis at multiple low-temperature germination stages, and a co-expression network was constructed by weighted gene co-expression network analysis (WGCNA). Data analysis showed that 7964 up- and 5010 down-regulated differentially expressed genes (DEGs) of Ye478 were identified at low-temperature germination stages, while 6060 up- and 2653 down-regulated DEGs of Q1 were identified. Gene ontology (GO) enrichment analysis revealed that ribosome synthesis and hydrogen peroxide metabolism were enhanced and mRNA metabolism was weakened under low-temperature stress for Ye478, while hydrogen peroxide metabolism was enhanced and mRNA metabolism was weakened for Q1. DEGs pairwise comparisons between the two genotypes found that Ye478 performed more ribosome synthesis at low temperatures compared with Q1. WGCNA analysis based on 24 transcriptomes identified 16 co-expressed modules. Of these, the MEbrown module was highly correlated with Ye478 at low-temperature stages and catalase and superoxide dismutase activity, and the MEred, MEgreen, and MEblack modules were highly correlated with Ye478 across low-temperature stages, which revealed a significant association between LTGA and these modules. GO enrichment analysis showed the MEbrown and MEred modules mainly functioned in ribosome synthesis and cell cycle, respectively. In addition, we conducted quantitative trait loci (QTL) analysis based on a doubled haploid (DH) population constructed by Ye478 and Q1 and identified a major QTL explanting 20.6% of phenotype variance on chromosome 1. In this QTL interval, we found three, four, and three hub genes in the MEbrown, MEred, and MEgreen modules, of which two hub genes (Zm00001d031951, Zm00001d031953) related to glutathione metabolism and one hub gene (Zm00001d031617) related to oxidoreductase activity could be the candidate genes for LTGA. These biological functions and candidate genes will be helpful in understanding the regulatory mechanism of LTGA and the directional improvement of maize varieties for LTGA.


Assuntos
Locos de Características Quantitativas , Zea mays , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Zea mays/genética , Temperatura , Peróxido de Hidrogênio , Perfilação da Expressão Gênica , RNA Mensageiro
2.
Plants (Basel) ; 10(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34451629

RESUMO

In the field, maize flowering time and height traits are closely linked with yield, planting density, lodging resistance, and grain fill. To explore the genetic basis of flowering time and height traits in maize, we investigated six related traits, namely, days to anthesis (AD), days to silking (SD), the anthesis-silking interval (ASI), plant height (PH), ear height (EH), and the EH/PH ratio (ER) in two locations for two years based on two doubled haploid (DH) populations. Based on the two high-density genetic linkage maps, 12 and 22 quantitative trait loci (QTL) were identified, respectively, for flowering time and height-related traits. Of these, ten QTLs had overlapping confidence intervals between the two populations and were integrated into three consensus QTLs (qFT_YZ1a, qHT_YZ5a, and qHT_YZ7a). Of these, qFT_YZ1a, conferring flowering time, is located at 221.1-277.0 Mb on chromosome 1 and explained 10.0-12.5% of the AD and SD variation, and qHT_YZ5a, conferring height traits, is located at 147.4-217.3 Mb on chromosome 5 and explained 11.6-15.3% of the PH and EH variation. These consensus QTLs, in addition to the other repeatedly detected QTLs, provide useful information for further genetic studies and variety improvements in flowering time and height-related traits.

3.
Theor Appl Genet ; 133(8): 2521-2533, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32468093

RESUMO

KEY MESSAGE: The genetic basis of GLS resistance was dissected using two DH populations sharing a common resistant parent. A major QTL repeatedly detected in multiple developmental stages and environments was fine mapped in a backcross population. Grey leaf spot (GLS), caused by Cercospora zeae-maydis or Cercospora zeina, is a highly destructive foliar disease worldwide. However, the mechanism of resistance against GLS is not well understood. To study the inheritance of this resistance, we developed two doubled haploid (DH) populations sharing a common resistant parent. The two DH populations were grown in two locations representing the typical maize-growing mountain area in Southwest China for 2 years. GLS disease severity was investigated 2 or 3 times until maturity in the 2 years, and the area under the disease progress curve was calculated. Two high-density linkage maps were constructed by genotyping-by-sequencing. A total of 22 quantitative trait loci (QTLs) were detected for GLS resistance, with most QTLs being repeatedly detected in different stages, locations and years. The confidence intervals of two major QTLs (qGLS_Y2-2 and qGLS_Z2-1) on chromosome 2 from the two DH populations overlapped with each other and were integrated into one consensus QTL (qGLS_YZ2-1). Using highly resistant and highly susceptible plants from a BC3 population, we fine mapped this genetic locus to a genomic region of 2.4 Mb. Using a panel of 255 inbred lines from breeding programmes, we detected associations between markers in the qGLS_YZ2-1 region and GLS resistance. The peak marker (ID-B1) will be very useful for marker-assisted breeding for GLS resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Doenças das Plantas/genética , Zea mays/genética , Cercospora , China , Cromossomos de Plantas , Ligação Genética , Marcadores Genéticos , Genótipo , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Locos de Características Quantitativas , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...