Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400236, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563243

RESUMO

Skin-interfaced high-sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin-attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low-cost laser scribing of an adhesive composite with polyimide powders and amine-based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser-induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real-time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process.

2.
ACS Appl Mater Interfaces ; 14(10): 12855-12862, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254805

RESUMO

The development of wearable/stretchable electronics could largely benefit from advanced stretchable antennas with excellent on-body performance upon mechanical deformations. Despite recent developments of stretchable antennas based on intrinsically stretchable conductors, they are often affected by lossy human tissues and exhibit resonant frequency shifts upon stretching, preventing their applications in on-body wireless communication and powering. This work reports a three-dimensional (3D) stretchable wideband dipole antenna from mechanical assembly to simultaneously reduce the frequency detuning and enhance on-body performance. The large bandwidth is achieved by coupling two resonances from two pairs of radiation arms, which is well-maintained even when the antenna is directly placed on human bodies or stretched over 25%. Such an excellent on-body performance allows the antenna to robustly transmit the wireless data and energy. The design of the 3D stretchable wideband dipole antenna with significantly enhanced on-body wireless communication performance was validated by an experimental demonstration that features a small difference in the wirelessly received power between the on-body and off-body use. The combination of the mechanically assembled 3D geometries and the coupled mechanical-electromagnetic properties can open up new opportunities in deformable 3D antennas and other microwave devices with excellent on-body performance and tunable properties.

3.
Nanomicro Lett ; 13(1): 108, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-34138356

RESUMO

As the key component of wireless data transmission and powering, stretchable antennas play an indispensable role in flexible/stretchable electronics. However, they often suffer from frequency detuning upon mechanical deformations; thus, their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive. Here, a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability. The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting, whereas the rapid changing resonance frequency with deformations allows for wireless sensing. The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter (input power of - 3 dBm) efficiently (i.e., the receiving power higher than - 100 dBm over a distance of 100 m) on human bodies even upon 25% stretching. The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations, provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...