Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608972

RESUMO

Two-dimensional (2D) transition metal carbides (Ti3C2Tx MXene) have gained significant attention for their potential in constructing diverse functional materials, However, MXene is easily oxidized and weakly bound to the cellulose matrix, which pose challenges in developing MXene-decorated non-woven fabric with strong bonding and stable thermal management properties. Herein, we successfully prepared deep eutectic supramolecular polymer (DESP) functionalized MXene to address these issues. MXene can be wrapped with DESP to be insulated from water and protected from being oxidized. Subsequently, we achieved an efficient in-situ deposition of DESP-functionalized MXene onto fibers through a combination of dip coating and photopolymerization technique. The resulting nonwoven fabric (CNs-DESP@M) exhibited excellent photothermal conversion properties along with rapid thermal response and functional stability. Interestingly, the interface bonding between MXene and the fiber surface was significantly enhanced due to the abundant pyrogallol groups in DESP, resulting in the composite textile exhibiting commendable mechanical properties (2.68 MPa). Moreover, the as-prepared textile demonstrates outstanding bactericidal efficacy against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The multifunctional textile, created through a facile and efficient approach, demonstrates remarkable potential for applications in smart textiles, catering to the diverse needs of individuals in the future.


Assuntos
Antibacterianos , Celulose , Escherichia coli , Polímeros , Staphylococcus aureus , Têxteis , Celulose/química , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Fenômenos Mecânicos , Temperatura , Viabilidade Microbiana/efeitos dos fármacos
2.
Carbohydr Polym ; 315: 120979, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230637

RESUMO

Bioplastics are considered as potential alternatives to non-renewable and non-biodegradable petroleum-based plastics. Inspired by ionic and amphiphilic properties of mussel protein, we proposed a versatile and facile strategy for the fabrication of a high-performance chitosan (CS) composite film. This technique incorporates a cationic hyperbranched polyamide (QHB) and a supramolecular system based on the lignosulphonate (LS)-functionalized cellulose nanofibrils (CNF) (LS@CNF) hybrids. The cationic QHB was synthesized by a one-step process from hyperbranched polyamide and quaternary ammonium salt. Meanwhile, the functional LS@CNF hybrids act as a well-dispersed and rigid cross-linked domain in CS matrix. Owing to the interconnected hyperbranched and enhanced supramolecular network, the toughness and tensile strength of the CS/QHB/LS@CNF film simultaneously increased to 19.1 MJ/m3 and 50.4 MPa, 170.2 % and 72.6 % higher than the pristine CS film. Additionally, the functional QHB/LS@CNF hybrids endow the films with superior antibacterial activity, water resistance, UV shielding, and thermal stability. This bioinspired strategy provides a novel and sustainable method for the production of multifunctional CS films.


Assuntos
Quitosana , Nanofibras , Celulose , Nylons , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...