Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.405
Filtrar
1.
Front Vet Sci ; 11: 1385033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756526

RESUMO

Avihepadnavirus is a genus of the Hepadnaviridae family. It primarily infects birds, including species of duck, geese, cranes, storks, and herons etc. To understand the genetic relatedness and evolutionary diversity among avihepadnavirus strains, a comprehensive analysis of the available 136 full-length viral genomes (n = 136) was conducted. The genomes were classified into two major genotypes, i.e., GI and GII. GI viruses were further classified into 8 sub-genotypes including DHBV-I (duck hepatitis B virus-I), DHBV-II (Snow goose Hepatitis B, SGHBV), DHBV-III, RGHBV (rossgoose hepatitis B virus), CHBV (crane hepatitis B virus), THBV (Tinamou hepatitis B virus), STHBV (stork hepatitis B virus), and HHBV (Heron hepatitis B virus). DHBV-I contains two sub-clades DHBV-Ia and DHBV-Ib. Parrot hepatitis B virus (PHBV) stains fall into GII which appeared as a separate phylogenetic branch/clade. All the subtypes of viruses in GI and GII seem to be genetically connected with viruses of DHBV-I by multiple mutational steps in phylogeographic analysis. Furthermore, 16 potential recombination events among different sub-genotypes in GI and one in GII were identified, but none of which is inter-genotypic between GI and GII. Overall, the results provide a whole picture of the genetic relatedness of avihepadnavirus strains, which may assist in the surveillance of virus spreading.

2.
iScience ; 27(5): 109693, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38689642

RESUMO

The USP7 deubiquitinase regulates proteins involved in the cell cycle, DNA repair, and epigenetics and has been implicated in cancer progression. USP7 inhibition has been pursued for the development of anti-cancer therapies. Here, we describe the discovery of potent and specific USP7 inhibitors exemplified by FX1-5303. FX1-5303 was used as a chemical probe to study the USP7-mediated regulation of p53 signaling in cells. It demonstrates mechanistic differences compared to MDM2 antagonists, a related class of anti-tumor agents that act along the same pathway. FX1-5303 synergizes with the clinically approved BCL2 inhibitor venetoclax in acute myeloid leukemia (AML) cell lines and ex vivo patient samples and leads to strong tumor growth inhibition in in vivo mouse xenograft models of multiple myeloma and AML. This work introduces new USP7 inhibitors, differentiates their mechanism of action from MDM2 inhibition, and identifies specific opportunities for their use in the treatment of AML.

3.
J Environ Manage ; 359: 121004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710146

RESUMO

In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.


Assuntos
Aerossóis , Dióxido de Carbono , Isótopos de Carbono , Material Particulado , Dióxido de Carbono/análise , China , Material Particulado/análise , Aerossóis/análise , Isótopos de Carbono/análise , Carvão Mineral , Poluentes Atmosféricos/análise , Carbono/análise , Humanos , Características da Família , População Rural , Monitoramento Ambiental
4.
BMC Med Res Methodol ; 24(1): 83, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589775

RESUMO

BACKGROUND: The timing of treating cancer patients is an essential factor in the efficacy of treatment. So, patients who will not respond to current therapy should receive a different treatment as early as possible. Machine learning models can be built to classify responders and nonresponders. Such classification models predict the probability of a patient being a responder. Most methods use a probability threshold of 0.5 to convert the probabilities into binary group membership. However, the cutoff of 0.5 is not always the optimal choice. METHODS: In this study, we propose a novel data-driven approach to select a better cutoff value based on the optimal cross-validation technique. To illustrate our novel method, we applied it to three clinical trial datasets of small-cell lung cancer patients. We used two different datasets to build a scoring system to segment patients. Then the models were applied to segment patients into the test data. RESULTS: We found that, in test data, the predicted responders and non-responders had significantly different long-term survival outcomes. Our proposed novel method segments patients better than the standard approach using a cutoff of 0.5. Comparing clinical outcomes of responders versus non-responders, our novel method had a p-value of 0.009 with a hazard ratio of 0.668 for grouping patients using the Cox proportion hazard model and a p-value of 0.011 using the accelerated failure time model which approved a significant difference between responders and non-responders. In contrast, the standard approach had a p-value of 0.194 with a hazard ratio of 0.823 using the Cox proportion hazard model and a p-value of 0.240 using the accelerated failure time model indicating the responders and non-responders do not differ significantly in survival. CONCLUSION: In summary, our novel prediction method can successfully segment new patients into responders and non-responders. Clinicians can use our prediction to decide if a patient should receive a different treatment or stay with the current treatment.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Carcinoma de Pequenas Células do Pulmão/terapia , Resultado do Tratamento , Projetos de Pesquisa
5.
J Imaging Inform Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627269

RESUMO

Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the diverse algorithms currently available? The objective of our study is to develop DWI radiomic models based on different machine learning algorithms and identify the optimal prediction model. We undertook a retrospective analysis of the DWI data of 77 patients with IMCC confirmed by pathological testing. Fifty-seven patients initially included in the study were randomly assigned to either the training set or the validation set in a ratio of 7:3. We established four different classifier models, namely random forest (RF), support vector machines (SVM), logistic regression (LR), and gradient boosting decision tree (GBDT), by manually contouring the region of interest and extracting prominent radiomic features. An external validation of the model was performed with the DWI data of 20 patients with IMCC who were subsequently included in the study. The area under the receiver operating curve (AUC), accuracy (ACC), precision (PRE), sensitivity (REC), and F1 score were used to evaluate the diagnostic performance of the model. Following the process of feature selection, a total of nine features were retained, with skewness being the most crucial radiomic feature demonstrating the highest diagnostic performance, followed by Gray Level Co-occurrence Matrix lmc1 (glcm-lmc1) and kurtosis, whose diagnostic performances were slightly inferior to skewness. Skewness and kurtosis showed a negative correlation with the pathological grading of IMCC, while glcm-lmc1 exhibited a positive correlation with the IMCC pathological grade. Compared with the other three models, the SVM radiomic model had the best diagnostic performance with an AUC of 0.957, an accuracy of 88.2%, a sensitivity of 85.7%, a precision of 85.7%, and an F1 score of 85.7% in the training set, as well as an AUC of 0.829, an accuracy of 76.5%, a sensitivity of 71.4%, a precision of 71.4%, and an F1 score of 71.4% in the external validation set. The DWI-based radiomic model proved to be efficacious in predicting the pathological grade of IMCC. The model with the SVM classifier algorithm had the best prediction efficiency and robustness. Consequently, this SVM-based model can be further explored as an option for a non-invasive preoperative prediction method in clinical practice.

6.
Mol Divers ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584199

RESUMO

In this paper, a series of phenoxypyridine-containing chalcone derivatives (L1-L28) were designed and synthesized, characterized on NMR and HRMS. Ningnanmycin (NNM) was used as a control agent. The results of the antiviral activity testing showed that the curative activity EC50 values of L1 and L4 against TMV were 140.5 and 90.7 µg/mL, respectively, which were superior to that of NNM (148.3 µg/mL). The EC50 values of 154.1, 102.6 and 140.0 µg/mL for the anti-TMV protective activities of L1, L4 and L15 were superior to that of NNM (188.2 µg/mL). The mechanism of action between L4 and NNM and tobacco mosaic virus capsid protein (TMV-CP) was preliminarily investigated. The results of microscale thermophoresis (MST) experiments showed that L4 had a strong binding affinity for TMV-CP with a dissociation constant Kd value of 0.00149 µM, which was better than that of NNM (2.73016 µM). The results of molecular docking experiments showed that L4 formed shorter hydrogen bonds with amino acid residues of TMV-CP than NNM and formed more amino acid residues than NNM, which indicated that L4 was more tightly bound to TMV-CP. This study suggested that phenoxypyridine-containing chalcone derivatives can be used as new anti-TMV drugs through further research and development.

7.
Biomed Pharmacother ; 175: 116519, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663104

RESUMO

OBJECTIVES: To elucidate the therapeutic effects and mechanisms of Atractylodes macrocephala extract crystallize (BZEP) and BZEP self-microemulsion (BZEPWR) on metabolic dysfunction-associated fatty liver disease (MAFLD) induced by "high sugar, high fat, and excessive alcohol consumption" based on the gut-liver axis HDL/LPS signaling pathway. METHODS: In this study, BZEP and BZEPWR were obtained via isolation, purification, and microemulsification. Furthermore, an anthropomorphic MAFLD rat model of "high sugar, high fat, and excessive alcohol consumption" was established. The therapeutic effects of BZEPWR and BZEP on the model rats were evaluated in terms of liver function, lipid metabolism (especially HDL-C), serum antioxidant indexes, and liver and intestinal pathophysiology. To determine the lipoproteins in the serum sample, the amplitudes of a plurality of NMR spectra were derived via deconvolution of the composite methyl signal envelope to yield HDL-C subclass concentrations. The changes in intestinal flora were detected via 16 S rRNA gene sequencing. In addition, the gut-liver axis HDL/LPS signaling pathway was validated using immunohistochemistry, immunofluorescence, and western blot. RESULTS: The findings established that BZEPWR and BZEP improved animal signs, serum levels of liver enzymes (ALT and AST), lipid metabolism (TC, TG, HDL-C, and LDL-C), and antioxidant indexes (GSH, SOD, and ROS). In addition, pathological damage to the liver, colon, and ileum was ameliorated, and the intestinal barrier function of the model rats was restored. At the genus level, BZEPWR and BZEP exerted positive effects on beneficial bacteria, such as Lactobacillus and norank_f__Muribaculaceae, and inhibitory effects on harmful bacteria, such as unclassified_f__Lachnospiraceae and Blautia. Twenty HDL-C subspecies were detected, and their levels were differentially increased in both BZEPWR and BZEP groups, with BZEPWR exhibiting a stronger elevating effect on specific HDL-C subspecies. Also, the gut-liver axis HDL/LPS signaling pathway was studied, which indicated that BZEPWR and BZEP significantly increased the expressions of ABCA1, LXR, occludin, and claudin-1 proteins in the gut and serum levels of HDL-C. Concomitantly, the levels of LPS in the serum and TLR4, Myd88, and NF-κB proteins in the liver were decreased. CONCLUSION: BZEPWR and BZEP exert restorative and reversal effects on the pathophysiological damage to the gut-liver axis in MAFLD rats, and the therapeutic mechanism may be related to the regulation of the intestinal flora and the HDL/LPS signaling pathway.

8.
Environ Res ; 252(Pt 2): 118944, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636647

RESUMO

Paralytic shellfish toxins (PST) in shellfish products have led to severe risks to human health. To monitor the risk, the Canadian Shellfish Sanitation Program has been collecting longitudinal PST measurements in blue mussel (Mytilus edulis) and soft-shell clam (Mya arenaria) samples in six coastal provinces of Canada. The spatial distributions of major temporal variation patterns were studied via Functional Principal Component Analysis. Seasonal increases in PST contamination were found to vary the most in terms of magnitude along the coastlines, which provides support for location-specific management of the time-sensitive PST contamination. In British Columbia, the first functional principal component (FPC1) indicated the variance among the magnitudes, while FPC2 indicated the seasonality of the PST levels. The temporal variations tended to be positively correlated with the abundance of dianoflagellates Alexandrium spp., and negatively with precipitation and inorganic nutrients. These findings indicate the underlying mechanism of PST variation in various geographical settings. In New Brunswick, Prince Edward, and Nova Scotia, the top FPCs indicated that the PST contamination differed mostly in the seasonal increase of the PST level during summer.

9.
Bioorg Med Chem Lett ; 105: 129752, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631541

RESUMO

The misfolding and aggregation of α-Syn play a pivotal role in connecting diverse pathological pathways in Parkinson's disease (PD). Preserving α-Syn proteostasis and functionality by inhibiting its aggregation or disaggregating existing aggregates using suitable inhibitors represents a promising strategy for PD prevention and treatment. In this study, a series of benzothiazole-polyphenol hybrids was designed and synthesized. Three identified compounds exhibited notable inhibitory activities against α-Syn aggregation in vitro, with IC50 values in the low micromolar range. These inhibitors demonstrated sustained inhibitory effects throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation. Moreover, the compounds effectively disintegrated preformed α-Syn oligomers and fibers, potentially by binding to specific domains within the fibers, inducing fibril instability, collapse, and ultimately resulting in smaller-sized aggregates and monomers. These findings offer valuable insights into the therapeutic potential of polyphenol hybrids with 2-conjugated benzothiazole targeting α-Syn aggregation in the treatment of PD.


Assuntos
Benzotiazóis , Polifenóis , Agregados Proteicos , alfa-Sinucleína , Benzotiazóis/química , Benzotiazóis/farmacologia , Benzotiazóis/síntese química , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/síntese química , Humanos , Agregados Proteicos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
10.
J Agric Food Chem ; 72(18): 10227-10235, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669314

RESUMO

In this study, 24 indole derivatives containing 1,3,4-thiadiazole were discovered and synthesized. The target compounds' antifungal efficacy against 14 plant pathogenic fungal pathogens was then determined in vitro. With an EC50 value of 2.7 µg/mL, Z2 demonstrated the highest level of bioactivity among them against Botrytis cinerea (B.c.), exceeding the concentrations of the control prescription drugs azoxystrobin (Az) (EC50 = 14.5 µg/mL) and fluopyram (Fl) (EC50 = 10.1 µg/mL). Z2 underwent in vivo testing on blueberry leaves in order to evaluate its usefulness in real-world settings. A reasonable protective effect was obtained with a control effectiveness of 93.0% at 200 µg/mL, which was superior to those of Az (83.0%) and Fl (52.0%). At 200 µg/mL, this chemical had an efficacy of 84.0% in terms of curative efficacy. These figures outperformed those of Az (69.0%) and Fl (48.0%). Scanning electron microscopy (SEM) experiments and light microscopy experiments showed that Z2 altered the integrity of the cell wall and cell membrane of the pathogenic fungus B.c., which led to an increase in the content of malondialdehyde (MDA), cellular leakage, and cellular permeability. Enzyme activity assays and molecular docking studies indicated that Z2 could act as a potential succinate dehydrogenase inhibitor (SDHI). It was hypothesized that Z2 could cause disruption of mycelial cell membranes, which in turn leads to mycelial death. According to the research, indole derivatives containing 1,3,4-thiadiazole were expected to evolve into new fungicides due to their significant antifungal effects on plant fungi.


Assuntos
Botrytis , Fungicidas Industriais , Indóis , Doenças das Plantas , Tiadiazóis , Tiadiazóis/farmacologia , Tiadiazóis/química , Tiadiazóis/síntese química , Indóis/química , Indóis/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
11.
Sci Total Environ ; 933: 172817, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688372

RESUMO

Shellfish poisonings have posed severe risks to human health globally. The Canadian Shellfish Sanitation Program was established in 1948 to monitor the toxin levels at shellfish harvesting sites along the coast of six provinces in Canada. Domoic acid has been a causal toxin for amnesic shellfish poisoning, and a macro-scale analysis of the temporal and spatial variation of domoic acid along Canada's coast was conducted in this study. We aggregated the toxin levels by week in blue mussel (Mytilus edulis) and soft-shell clam (Mya arenaria) samples, respectively, over a one-year scale. The subsequent application of Functional Principal Component Analysis unveiled that magnitudes of seasonal variation and peaked DA levels around early summer, spring, or mid-fall formed the largest variation in the toxin levels in blue mussels along the coastlines of British Columbia and Prince Edward Island and in soft-shell calms along those of New Brunswick and Nova Scotia. In Quebec, the DA levels were low and varied mostly in terms of the overall magnitude from spring to fall. Downstream correlation analyses in British Columbia further discovered that, at most sites, the strongest correlations were negative between precipitation as well as inorganic nutrients (including nitrate, nitrite, phosphate, and silicate) on one side and DA a few weeks afterward on the other. These findings indicated associations between amnesic shellfish poisoning and environmental stresses.

13.
Med Sci Monit ; 30: e944661, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551037

RESUMO

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Tian-Wei Zhang, Li Xing, Jun-Long Tang, Jing-Xiao Lu, Chun-Xiao Liu. Marchantin M Induces Apoptosis of Prostate Cancer Cells Through Endoplasmic Reticulum Stress. Med Sci Monit, 2015; 21: 3570-3576. DOI: 10.12659/MSM.894476.

14.
Pathogens ; 13(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535561

RESUMO

Between 7 December 2022 and 28 February 2023, China experienced a new wave of COVID-19 that swept across the entire country and resulted in an increasing amount of respiratory infections and hospitalizations. The purpose of this study is to reveal the intensity and composition of coinfecting microbial agents. In total, 196 inpatients were recruited from The Third People's Hospital of Shenzhen, and 169 respiratory and 73 blood samples were collected for metagenomic next-generation sequencing. The total "Infectome" was characterized and compared across different groups defined by the SARS-CoV-2 detection status, age groups, and severity of disease. Our results revealed a total of 22 species of pathogenic microbes (4 viruses, 13 bacteria, and 5 fungi), and more were discovered in the respiratory tract than in blood. The diversity of the total infectome was highly distinguished between respiratory and blood samples, and it was generally higher in patients that were SARS-CoV-2-positive, older in age, and with more severe disease. At the individual pathogen level, HSV-1 seemed to be the major contributor to these differences observed in the overall comparisons. Collectively, this study reveals the highly complex respiratory infectome and high-intensity coinfection in patients admitted to the hospital during the period of the 2023 COVID-19 pandemic in China.

15.
PLoS One ; 19(3): e0287187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507443

RESUMO

Based on the data of the State of Global Air (2020), air quality deterioration in Thailand has caused ~32,000 premature deaths, while the World Health Organization evaluated that air pollutants can decrease the life expectancy in the country by two years. PM2.5 was collected at three air quality observatory sites in Chiang-Mai, Bangkok, and Phuket, Thailand, from July 2020 to June 2021. The concentrations of 25 elements (Na, Mg, Al, Si, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Sr, Ba, and Pb) were quantitatively characterised using energy-dispersive X-ray fluorescence spectrometry. Potential adverse health impacts of some element exposures from inhaling PM2.5 were estimated by employing the hazard quotient and excess lifetime cancer risk. Higher cancer risks were detected in PM2.5 samples collected at the sampling site in Bangkok, indicating that vehicle exhaust adversely impacts human health. Principal component analysis suggests that traffic emissions, crustal inputs coupled with maritime aerosols, and construction dust were the three main potential sources of PM2.5. Artificial neural networks underlined agricultural waste burning and relative humidity as two major factors controlling the air quality of Thailand.


Assuntos
Poluentes Atmosféricos , Neoplasias , Humanos , Análise de Componente Principal , Monitoramento Ambiental , Tailândia , Poluentes Atmosféricos/análise , Poeira/análise , Análise de Regressão , Material Particulado/análise
17.
Sci Total Environ ; 917: 170497, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301775

RESUMO

Climate change is leading to the upward migration of treelines in mountainous regions, resulting in changes to the carbon and nitrogen inputs in soils. The impact of these alterations on the microbial mineralization of the existing soil organic carbon (SOC) pool remains uncertain, making it challenging to anticipate their effects on the carbon balance. To enhance our prediction and understanding of native SOC mineralization in Himalayan regions resulting from treeline shifts, a study was conducted to quantify soil priming effects (PEs) at high elevations above the treeline ecosystem. In laboratory incubation, soils were treated with a combination of 13C-glucose and varying nitrogen rates, along with carbon-only treatments and control groups without any amendments. The addition of carbon with varying nitrogen addition rates exhibited diverse PEs on native SOC. A highly positive PE was observed under low nitrogen input due to a high carbon/nitrogen imbalance and increased L-leucine aminopeptidase (LAP) activity, coupled with low nitrogen availability and carbon use efficiency (CUE). In contrast, a positive PE declined following high nitrogen input due to a low carbon/nitrogen imbalance and LAP activity, coupled with high nitrogen availability and CUE. These findings support the concept that multiple mechanisms (i.e., microbial nitrogen mining and microbial metabolic efficiency) exist that regulate SOC mineralization under the addition of carbon with varying nitrogen rates. Thus, an increase in nitrogen availability fulfils microbial nitrogen demand, reduces the microbial carbon/nitrogen imbalance, decreases enzyme activity that requires nitrogen and enhances microbial metabolic efficiency. Consequently, this mechanism reduces the positive PE, thereby serving as a potential tool for stabilizing native SOC in above-treeline ecosystems.


Assuntos
Carbono , Ecossistema , Solo , Nitrogênio/análise , Microbiologia do Solo
18.
Biochem Genet ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324134

RESUMO

Non-union fractures pose a significant clinical challenge, often leading to prolonged pain and disability. Understanding the molecular mechanisms underlying non-union fractures is crucial for developing effective therapeutic interventions. This study integrates bioinformatics analysis and experimental validation to unravel key genes and pathways associated with non-union fractures. We identified differentially expressed genes (DEGs) between non-union and fracture healing tissues using bioinformatics techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to elucidate the biological processes and pathways involved. Common DEGs were identified, and a protein-protein interaction (PPI) network was constructed. Fibronectin-1 (FN1), Thrombospondin-1 (THBS1), and Biglycan (BGN) were pinpointed as critical target genes for non-union fracture treatment. Experimental validation involved alkaline phosphatase (ALP) and Alizarin Red staining to confirm osteogenic differentiation. Our analysis revealed significant alterations in pathways related to cell behavior, tissue regeneration, wound healing, infection, and immune responses in non-union fracture tissues. FN1, THBS1, and BGN were identified as key genes, with their upregulation indicating potential disruptions in the bone remodeling process. Experimental validation confirmed the induction of osteogenic differentiation. The study provides comprehensive insights into the molecular mechanisms of non-union fractures, emphasizing the pivotal roles of FN1, THBS1, and BGN in extracellular matrix dynamics and bone regeneration. The findings highlight potential therapeutic targets and pathways for further investigation. Future research should explore interactions between these genes, validate results using in vivo fracture models, and develop tailored treatment strategies for non-union fractures, promising significant advances in clinical management.

19.
Eur J Med Chem ; 268: 116198, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368711

RESUMO

α-Syn fibers, the primary cause and central element of Lewy bodies (LB), play a pivotal role in the development of Parkinson's disease (PD). This research aims to identify more potent inhibitors of α-Syn aggregation. A series of N-aryl-3-aryl-pyrazole-5-carboxamide derivatives were designed and synthesized for this purpose. Among them, four candidate compounds, combining pyrazole and polyphenol blocks, were identified through screening, demonstrating good inhibitory effects with IC50 values in the low micromolar range (1.25-4.29 µM). Two candidates exhibited high permeability through the blood-brain barrier. Mechanistic studies using various methods revealed that the candidates preferentially bind to the aggregation-prone domains-proNAC or NAC domains of α-Syn. This binding hinders the conformational transition from random coil/α-helix to ß-sheet, preserving α-Syn proteostasis. As a result, it interferes with α-Syn nuclei formation, prolongs the lag phase, decelerates the elongation phase, and ultimately impedes the formation of α-Syn fibrils. Additionally, the candidates demonstrated promising results in the disaggregation of preformed α-Syn fibers, potentially by binding to specific sites near the ß-sheet domain within fibers. This reduces fiber stability, causing rapid collapse and yielding smaller aggregates and monomers. Crucially, the candidate compounds exhibited significant inhibitory efficacy against α-Syn aggregation within nerve cells with low cytotoxicity. This resulted in a notable inhibition of the formation of LB-like α-Syn inclusions. These compounds show considerable promise as potential therapeutic agents for the prevention and treatment of PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Transporte Biológico
20.
Curr Eye Res ; 49(5): 524-532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305219

RESUMO

PURPOSE: Diabetic retinopathy (DR) is a major cause of irreversible blindness in the working-age population. Neovascularization is an important hallmark of advanced DR. There is evidence that Yes-associated protein (YAP)/transcriptional co-activator with a PDZ binding domain (TAZ) plays an important role in angiogenesis and that its activity is regulated by vascular endothelial growth factor (VEGF). Therefore, the aim of this study was to investigate the effect of YAP/TAZ-VEGF crosstalk on the angiogenic capacity of human retinal microvascular endothelial cells (hRECs) in a high-glucose environment. METHODS: The expression of YAP and TAZ of hRECs under normal conditions, hypertonic conditions and high glucose were observed. YAP overexpression (OE-YAP), YAP silencing (sh-YAP), VEGF overexpression (OE-VEGF) and VEGF silencing (sh-VEGF) plasmids were constructed. Cell counting kit-8 assay was performed to detect cells proliferation ability, transwell assay to detect cells migration ability, and tube formation assay to detect tube formation ability. The protein expression of YAP, TAZ, VEGF, matrix metalloproteinase (MMP)-8, MMP-13, vessel endothelium (VE)-cadherin and alpha smooth muscle actin (α-SMA) was measured by western blot. RESULTS: The proliferation of hRECs was significantly higher in the high glucose group compared with the normal group, as well as the protein expression of YAP and TAZ (p < 0.01). YAP and VEGF promoted the proliferation, migration and tube formation of hRECs in the high glucose environment (p < 0.01), and increased the expression of TAZ, VEGF, MMP-8, MMP-13 and α-SMA while reducing the expression of VE-cadherin (p < 0.01). Knockdown of YAP effectively reversed the above promoting effects of OE-VEGF (p < 0.01) and overexpression of YAP significantly reversed the inhibition effects of sh-VEGF on above cell function (p < 0.01). CONCLUSION: In a high-glucose environment, YAP/TAZ can significantly promote the proliferation, migration and tube formation ability of hRECs, and the mechanism may be related to the regulation of VEGF expression.


Assuntos
Angiogênese , Retinopatia Diabética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fator A de Crescimento do Endotélio Vascular , Proteínas de Sinalização YAP , Humanos , Angiogênese/metabolismo , Proliferação de Células , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Retina/metabolismo , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...