Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2320276121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381789

RESUMO

Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.


Assuntos
Neuropeptídeos , Sono , Humanos , Sono/fisiologia , Ponte/fisiologia , Locus Cerúleo/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
J Colloid Interface Sci ; 657: 913-920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091914

RESUMO

Chirality dynamic tuning plays fundamental roles in chemistry, material science and biological system. Herein, a pair of azobenzene-bridged bis-tryptophan enantiomers (Azo-di-d/l-Trp) were designed and synthesized via simple reactions. With the fuel of glucono-δ-lactone (GdL), releasing protons during its hydrolysis, the alkaline solution of Azo-di-d/l-Trp gradually self-assembled into contrast chiral helical structures and displayed magnitude and mirror image of circular dichroism (CD) signals. While the chiral helices converted to CD silent nanoparticles when the azobenzene moiety isomerized from trans- to cis-form under UV irradiation. More importantly, this chiroptical switch, displaying reversible interconversion between chiral amplification and silent, can be smartly controlled via photoirradiation at various wavelengths.

3.
FASEB J ; 37(11): e23236, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37846808

RESUMO

Immune checkpoint inhibitors have effectively transformed the treatment of many cancers, particularly those highly devastating malignancies. With their widespread popularity, the drawbacks of immune checkpoint inhibitors are also recognized, such as drug resistance and immune-related systematic side effects. Thus, it never stops investigating novel immune checkpoint inhibitors. Lymphocyte Activation Gene-3 (LAG-3) is a well-established co-inhibitory receptor that performs negative regulation on immune responses. Recently, a novel FDA-approved LAG-3 blocking agent, together with nivolumab as a new combinational immunotherapy for metastatic melanoma, brought LAG-3 back into focus. Clinical data suggests that anti-LAG-3 agents can amplify the therapeutic response of other immune checkpoint inhibitors with manageable side effects. In this review, we elucidate the intercellular and intracellular mechanisms of LAG-3, clarify the current understanding of LAG-3 in the tumor microenvironment, identify present LAG-3-associated therapeutic agents, discuss current LAG-3-involving clinical trials, and eventually address future prospects for LAG-3 inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/patologia , Nivolumabe/uso terapêutico , Imunoterapia , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
4.
Front Plant Sci ; 14: 1163228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457348

RESUMO

In response to salt stress, plants alter the expression of manifold gene networks, enabling them to survive and thrive in the face of adversity. As a result, the growth and development of plant roots could be drastically altered, with significant inhibition of the growth of root meristematic zones. Although it is known that root growth is primarily regulated by auxins and cytokinins, the molecular regulatory mechanism by which salt stress stunts root meristems remains obscure. In this study, we found that the ZmmiR169q/ZmNF-YA8 module regulates the growth of maize taproots in response to salt stress. Salt stress downregulates ZmmiR169q expression, allowing for significant upregulation of ZmNF-YA8, which, in turn, activates ZmERF1B, triggering the upregulation of ASA1 and ASA2, two rate-limiting enzymes in the biosynthesis of tryptophan (Trp), leading to the accumulation of auxin in the root tip, thereby inhibiting root growth. The development of the maize root is stymied as meristem cell division and meristematic zone expansion are both stifled. This study reveals the ZmmiR169q/ZmNF-YA8 module's involvement in maintaining an equilibrium in bestowing plant salt tolerance and root growth and development under salt stress, providing new insights into the molecular mechanism underlying the homeostatic regulation of plant development in response to salt stress.

5.
BMC Cancer ; 23(1): 528, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296415

RESUMO

BACKGROUND: New immunotherapeutic strategies based on predictors are urgently needed. Toll-like receptor adaptor interacting with SLC15A4 on the lysosome (TASL) was recently confirmed to fulfill an important role in the innate immune response. However, whether TASL is involved in tumor development and immunotherapy response prediction has not been reported. METHODS: TCGA and GTEx were used to yield transcriptional, genetic, and epigenetic levels of TASL in 33 cancer types. CIBERSORT was used to explore the correlation between TASL expression and multiple immune-related signatures and tumor-infiltrating immune cell content in different cancer types. The ability of TASL to predict tumor immunotherapy response was analyzed in seven datasets. Finally, we tested TASL expression in human glioma cell lines and tissue samples and analyzed its correlation with clinicopathological parameters. RESULTS: TASL is widely heterogeneous at the transcriptional, genetic, and epigenetic levels. High TASL expression is an independent poor prognostic factor for immune "cold" tumor Low-Grade Glioma (LGG) but an opposite factor for "hot" tumors Lung Adenocarcinoma (LUAD) and Skin Cutaneous Melanoma (SKCM). TASL may affect tumor immune infiltration by mediating tumor-infiltrating lymphocytes and tumor-associated macrophages. It may differentially affect the prognosis of the three cancers by regulating the immunosuppressive microenvironment in LGG and the immunostimulatory microenvironment in LUAD and SKCM. High TASL expression is a potential biomarker for the positive response to immunotherapy in cancers such as SKCM and was also experimentally confirmed to be positively associated with adverse clinicopathological features of gliomas. CONCLUSION: TASL expression is an independent prognostic factor for LGG, LUAD, and SKCM. High TASL expression is a potential biomarker for the positive response to immunotherapy in certain cancer types such as SKCM. Further basic studies focusing on TASL expression and tumor immunotherapy are urgently needed.


Assuntos
Adenocarcinoma de Pulmão , Glioma , Neoplasias Pulmonares , Melanoma , Neoplasias Cutâneas , Humanos , Prognóstico , Biomarcadores , Imunoterapia , Microambiente Tumoral , Melanoma Maligno Cutâneo
6.
Biomed Pharmacother ; 162: 114583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989722

RESUMO

N6-methyladenosine (m6A) is a ubiquitous mRNA modification in eukaryotes. m6A occurs through the action of methyltransferases, demethylases, and methylation-binding proteins. m6A methylation of RNA is associated with various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, cerebral apoplexy, brain injury, epilepsy, cerebral arteriovenous malformations, and glioma. Furthermore, recent studies report that m6A-related drugs have attracted considerable concerns in the therapeutic areas of neurological disorders. Here, we mainly summarized the role of m6A modification in neurological diseases and the therapeutic potential of m6A-related drugs. The aim of this review is expected to be useful to systematically assess m6A as a new potential biomarker and develop innovative modulators of m6A for the amelioration and treatment of neurological disorders.


Assuntos
Doenças do Sistema Nervoso Central , Metiltransferases , Humanos , Metilação , Metiltransferases/genética , RNA/metabolismo
7.
Int J Gen Med ; 16: 997-1015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974063

RESUMO

Purpose: The efficacy of immunotherapy for non-small cell lung cancer (NSCLC) is limited owing to cold tumors and drug resistance. Therefore, it is important to identify the molecular mechanisms underlying immune evasion in NSCLC. Spontaneous ferroptosis of neutrophils has been suggested as a key mechanism of immunosuppression in cancer. Insulin-like growth factor binding protein 1 (IGFBP1) plays an important role in immune infiltration in several cancers. However, the role of IGFBP1 in NSCLC is unknown. Therefore, in this study, we aimed to investigate the association of IGFBP1 mRNA expression with infiltration of myeloid-derived suppressor cells and prognosis in NSCLC. Patients and Methods: Retrospective RNA-seq data from 990 patients in the Cancer Genome Atlas (TCGA) database were analyzed in relation to patient clinical characteristics. The Timer2 database was used to assess immune infiltration, and the FerrDb V2 database was used to obtain ferroptosis-related genes. Finally, the results were validated by the proteomic analysis of serum samples collected from six patients with NSCLC and six healthy individuals. Results: IGFBP1 expression was enriched in lung adenocarcinoma samples and positively correlated with the pathological grade of NSCLC. IGFBP1 expression was an independent prognostic factor for the overall survival of patients with NSCLC. In addition, IGFBP1 expression correlated with myeloid-derived suppressor cell infiltration. Notably, Gene Ontology analysis of IGFBP1-related genes revealed that the major molecular functions of their protein products were related to NADP+ 1-oxidoreductase activity. Furthermore, expression levels of multiple ferroptosis suppressor genes positively correlated with IGFBP1 expression. Conclusion: High IGFBP1 expression indicates a poor prognosis in patients with NSCLC, which may be related to tumor immunosuppression caused by neutrophil ferroptosis.

8.
Methods Mol Biol ; 2557: 303-332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512224

RESUMO

The Golgi is a complex structure characterized by stacks of tightly aligned flat cisternae. In mammalian cells, Golgi stacks often concentrate in the perinuclear region and link together to form a ribbon. This structure is dynamic to accommodate continuous cargo flow in and out of the Golgi in both directions and undergoes morphological changes under physiological and pathological conditions. The fine, stacked Golgi structure makes it difficult to study by conventional light or even super-resolution microscopy. Furthermore, efforts to understand how Golgi structural dynamics impact cellular processes have been slow because of the knowledge gap in the protein machinery that maintains the complex and dynamic Golgi structure. In this method article, we list the common assays used in our research to help new and established researchers select the most appropriate method to properly address their questions.


Assuntos
Complexo de Golgi , Mamíferos , Animais , Complexo de Golgi/metabolismo
9.
Biomed Pharmacother ; 157: 114054, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462314

RESUMO

PURPOSE: Microglia-neuron crosstalk is critically involved in synaptic plasticity and degeneration by releasing diverse mediators in Alzheimer's disease (AD). Therefore, determining contributors that modulate the systemic microenvironment is essential. Cordycepin (CCS) is a novel neuroprotective compound obtained from Cordyceps militaris. However, the anti-AD efficacy and potential mechanism of CCS treatment remain unclear. This study aimed to elucidate the microglia-neuron symphony in AD after CCS treatment and to explore the possible mechanisms of its neuroprotective efficacy. METHODS AND RESULTS: CCS treatment improved learning and memory impairment in 9-month-old APP/PS1 mice by behavioral tests. CCS polarized the microglia from M1 to M2, inhibited neuronal apoptosis and promoted synaptic remodeling accompanied by in vivo and in vitro upregulation of NGF. The cAMP-response element-binding protein (CREB) was also activated after MG-M2 polarization. Further, we verified that the sg3 promoter region of NGF (-1018 to -1011) is the key binding site for CREB-induced NGF transcription, which increased NGF expression and secretion. Finally, microglia-derived NGF was confirmed as an important mediator in microglia-neuron symphony to improve the neuronal microenvironment after CCS treatment. CONCLUSIONS: CCS improved the neuronal synaptic plasticity and senescence by promoting MG-M2 activation driven by CREB-induced NGF upregulation and facilitated symphony communication between the microglia and neuron in AD. This study provides a new perspective on the development of a novel strategy for anti-AD therapy and offers new targets for anti-AD drug development.


Assuntos
Doença de Alzheimer , Plasticidade Neuronal , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
10.
J Am Chem Soc ; 144(29): 13218-13225, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819848

RESUMO

Protein-protein interactions (PPIs) form complex networks to drive cellular signaling and cellular functions. Precise modulation of a target PPI helps explain the role of the PPI in cellular events and possesses therapeutic potential. For example, valosin-containing protein (VCP/p97) is a hub protein that interacts with more than 30 adaptor proteins involved in various cellular functions. However, the role of each p97 PPI during the relevant cellular event is underexplored. The development of small-molecule PPI modulators remains challenging due to a lack of grooves and pockets in the relatively large PPI interface and the fact that a common binding groove in p97 binds to multiple adaptors. Here, we report an antibody fragment-based modulator for the PPI between p97 and its adaptor protein NSFL1C (p47). We engineered these antibody modulators by phage display against the p97-interacting domain of p47 and minimizing binding to other p97 adaptors. The selected antibody fragment modulators specifically disrupt the intracellular p97/p47 interaction. The potential of this antibody platform to develop PPI inhibitors in therapeutic applications was demonstrated through the inhibition of Golgi reassembly, which requires the p97/p47 interaction. This study presents a unique approach to modulate specific intracellular PPIs using engineered antibody fragments, demonstrating a method to dissect the function of a PPI within a convoluted PPI network.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/química , Fragmentos de Imunoglobulinas , Ligação Proteica , Proteína com Valosina/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-35656456

RESUMO

Knee osteoarthritis is a common chronic degenerative joint disease in middle-aged and elderly people. Intra-articular injection for the treatment of knee osteoarthritis is a regularly utilized nonsurgical treatment in modern medicine. Hyaluronic acid (HA) and platelet-rich plasma (PRP) are two frequently employed intra-articular devices. Hyaluronic acid (HA) is an accepted nonsurgical treatment for symptomatic KOA, and platelet-rich plasma is a popular option in the treatment of KOA in recent years. The purpose of this research is to compare the efficacy and safety of intra-articular injection of platelet-rich plasma (PRP) versus hyaluronic acid (HA) on the pain score scale, knee function, and related inflammatory biomarkers in KOA patients using a clinical randomized controlled trial. Participants are being randomized into either the hyaluronic acid (HA) or into the platelet-rich plasma (PRP) group. All patients receive 4 weeks of treatment (once a week), and well-being support and quadriceps training (3 times a week). The primary outcomes are measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the visual analog scale (VAS). The secondary outcomes include the activities of daily living score, erythrocyte sedimentation rate, C-reactive protein testing, interleukin-6 levels, and X-ray examination. In order to monitor the occurrence of irregularities and abnormalities, patients are assessed at each visit, and restorative treatment is given if necessary. The results of this clinical trial will verify the efficacy of PRP and HA in the treatment of KOA and provide important evidence for the clinical treatment of KOA. The trial was enlisted at the Chinese Clinical Trial Registry on 26 September 2020 (ChiCTR2000038635).

12.
New Phytol ; 235(6): 2270-2284, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713356

RESUMO

MicroRNAs (miRNAs) play key regulatory roles in seed development and emerge as new key targets for engineering grain size and yield. The Zma-miRNA169 family is highly expressed during maize seed development, but its functional roles in seed development remain elusive. Here, we generated zma-miR169o and ZmNF-YA13 transgenic plants. Phenotypic and genetic analyses were performed on these lines. Seed development and auxins contents were investigated. Overexpression of maize miRNA zma-miR169o increases seed size and weight, whereas the opposite is true when its expression is suppressed. Further studies revealed that zma-miR169 acts by negatively regulating its target gene, a transcription factor ZmNF-YA13 that also plays a key role in determining seed size. We demonstrate that ZmNF-YA13 regulates the expression of the auxin biosynthetic gene ZmYUC1, which modulates auxin levels in the early developing seeds and determines the number of endosperm cells, thereby governing maize seed size and ultimately yield. Overall, our present study has identified zma-miR169o and ZmNF-YA13 that form a functional module regulating auxin accumulation in maize seeds and playing an important role in determining maize seed size and yield, providing a set of novel molecular tools for yield improvement in molecular breeding and genetic engineering.


Assuntos
MicroRNAs , Zea mays , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sementes/genética , Sementes/metabolismo , Zea mays/metabolismo
13.
Entropy (Basel) ; 24(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35455197

RESUMO

Belief propagation (BP) decoding for polar codes has been extensively studied because of its inherent parallelism. However, its performance remains inferior to that of successive cancellation list decoding (SCL) due to the structure of the decoding graph. To improve the block error rate (BLER) performance, the BP correction (BPC) decoding, a post-processing scheme that corrects prior knowledge of the identified code bit, improves convergence by executing additional iterations on the failed BP decoder. Moreover, the BPC decoder demonstrates a better decoding performance than the BP-based bit-flipping decoder. Nevertheless, the additional decoding attempts lead to increased latency. In this article, a modified BPC decoder is proposed to reduce the number of decoding attempts by redefining the correction rules. A new metric is designed to effectively identify the corrected location. Numerical results show that the proposed modified BPC decoder achieves a slight improvement in BLER compared with the original BPC, with a dramatic reduction in average complexity. Furthermore, a higher-order version, named MBPC-Ω, is extended to further improve the performance, where the Ω is the maximum correction order. Numerical results show that the higher-order modified BPC achieves a similar BLER performance to existing multiple bit-flipping BP decoders but has around half the latency overhead. In addition, the proposed MBPC-2 decoder performs better than the cyclic redundancy check-aided SCL (CA-SCL) decoder with list size 4 and is slightly worse than the CA-SCL with list size 8 in high signal-to-noise ratio (SNR) regions but with significant decoding latency reduction.

14.
bioRxiv ; 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35291301

RESUMO

The ongoing COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an enveloped RNA virus. Despite the high economic and life losses caused by SARS-CoV-2, the detailed viral cycle, especially how it assembles and traffics in the secretory pathway, remains largely unknown. Here, we show that SARS-CoV-2 infection induces global alterations of the host endomembrane system, including dramatic Golgi fragmentation. Disrupting Golgi function with small molecules strongly inhibits viral infection. Furthermore, expression of several SARS-CoV-2 proteins individually is sufficient to trigger Golgi fragmentation. Significantly, SARS-CoV-2 infection down-regulates GRASP55 but up-regulates TGN46 expression, while expression of GRASP55 or knockdown of TGN46 reduces the infection rate of both USA-WA1 and Delta variants of SARS-CoV-2. Our study reveals that SARS-CoV-2 modulates Golgi structure and function via altering GRASP55 and TGN46 expression to facilitate viral trafficking, indicating the Golgi as a novel therapeutic target to block SARS-CoV-2 infection.

15.
Plant Physiol ; 188(1): 608-623, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718783

RESUMO

Salt stress significantly reduces the productivity of crop plants including maize (Zea mays). miRNAs are major regulators of plant growth and stress responses, but few studies have examined the potential impacts of miRNAs on salt stress responses in maize. Here, we show that ZmmiR169q is responsive to stress-induced ROS signals. After detecting that salt stress and exogenous H2O2 treatment reduced the accumulation of ZmmiR169q, stress assays with transgenic materials showed that depleting ZmmiR169q increased seedling salt tolerance whereas overexpressing ZmmiR169q decreased salt tolerance. Helping explain these observations, we found that ZmmiR169q repressed the transcript abundance of its target NUCLEAR FACTOR YA8 (ZmNF-YA8), and overexpression of ZmNF-YA8 in maize improved salt tolerance, specifically by transcriptionally activating the expression of the efficient antioxidant enzyme PEROXIDASE1. Our study reveals a direct functional link between salt stress and a miR169q-NF-YA8 regulatory module that plants use to manage ROS stress and strongly suggests that ZmNF-YA8 can be harnessed as a resource for developing salt-tolerant crop varieties.


Assuntos
Adaptação Fisiológica/genética , Peróxido de Hidrogênio/metabolismo , MicroRNAs , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Tolerância ao Sal/genética , Zea mays/genética , Zea mays/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Variantes Farmacogenômicos , Plantas Geneticamente Modificadas
16.
Entropy (Basel) ; 23(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34441078

RESUMO

We present a universal framework for quantum error-correcting codes, i.e., a framework that applies to the most general quantum error-correcting codes. This framework is based on the group algebra, an algebraic notation associated with nice error bases of quantum systems. The nicest thing about this framework is that we can characterize the properties of quantum codes by the properties of the group algebra. We show how it characterizes the properties of quantum codes as well as generates some new results about quantum codes.

17.
Entropy (Basel) ; 23(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205152

RESUMO

Quantum error correcting codes (QECCs) play an important role in preventing quantum information decoherence. Good quantum stabilizer codes were constructed by classical error correcting codes. In this paper, Bose-Chaudhuri-Hocquenghem (BCH) codes over finite fields are used to construct quantum codes. First, we try to find such classical BCH codes, which contain their dual codes, by studying the suitable cyclotomic cosets. Then, we construct nonbinary quantum BCH codes with given parameter sets. Finally, a new family of quantum BCH codes can be realized by Steane's enlargement of nonbinary Calderbank-Shor-Steane (CSS) construction and Hermitian construction. We have proven that the cyclotomic cosets are good tools to study quantum BCH codes. The defining sets contain the highest numbers of consecutive integers. Compared with the results in the references, the new quantum BCH codes have better code parameters without restrictions and better lower bounds on minimum distances. What is more, the new quantum codes can be constructed over any finite fields, which enlarges the range of quantum BCH codes.

18.
Curr Biol ; 31(1): 13-24.e4, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065013

RESUMO

Sufficient and efficient sleep is crucial for our health. Natural short sleepers can sleep significantly shorter than the average population without a desire for more sleep and without any obvious negative health consequences. In searching for genetic variants underlying the short sleep trait, we found two different mutations in the same gene (metabotropic glutamate receptor 1) from two independent natural short sleep families. In vitro, both of the mutations exhibited loss of function in receptor-mediated signaling. In vivo, the mice carrying the individual mutations both demonstrated short sleep behavior. In brain slices, both of the mutations changed the electrical properties and increased excitatory synaptic transmission. These results highlight the important role of metabotropic glutamate receptor 1 in modulating sleep duration.


Assuntos
Receptores de Glutamato Metabotrópico/genética , Sono/genética , Animais , Análise Mutacional de DNA , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Mutação , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Linhagem , Polissonografia , Receptores de Glutamato Metabotrópico/metabolismo , Fatores de Tempo , Sequenciamento do Exoma
19.
Sci Transl Med ; 11(514)2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619542

RESUMO

Sleep is a crucial physiological process for our survival and cognitive performance, yet the factors controlling human sleep regulation remain poorly understood. Here, we identified a missense mutation in a G protein-coupled neuropeptide S receptor 1 (NPSR1) that is associated with a natural short sleep phenotype in humans. Mice carrying the homologous mutation exhibited less sleep time despite increased sleep pressure. These animals were also resistant to contextual memory deficits associated with sleep deprivation. In vivo, the mutant receptors showed increased sensitivity to neuropeptide S exogenous activation. These results suggest that the NPS/NPSR1 pathway might play a critical role in regulating human sleep duration and in the link between sleep homeostasis and memory consolidation.


Assuntos
Consolidação da Memória/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Sono/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/genética , Sono/genética
20.
Neuron ; 103(6): 1044-1055.e7, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31473062

RESUMO

Sleep is crucial for our survival, and many diseases are linked to long-term poor sleep quality. Before we can use sleep to enhance our health and performance and alleviate diseases associated with poor sleep, a greater understanding of sleep regulation is necessary. We have identified a mutation in the ß1-adrenergic receptor gene in humans who require fewer hours of sleep than most. In vitro, this mutation leads to decreased protein stability and dampened signaling in response to agonist treatment. In vivo, the mice carrying the same mutation demonstrated short sleep behavior. We found that this receptor is highly expressed in the dorsal pons and that these ADRB1+ neurons are active during rapid eye movement (REM) sleep and wakefulness. Activating these neurons can lead to wakefulness, and the activity of these neurons is affected by the mutation. These results highlight the important role of ß1-adrenergic receptors in sleep/wake regulation.


Assuntos
Receptores Adrenérgicos beta 1/genética , Sono/genética , Vigília/genética , Animais , Técnicas de Introdução de Genes , Humanos , Camundongos , Mutação , Neurônios/metabolismo , Linhagem , Tegmento Pontino/citologia , Tegmento Pontino/metabolismo , Transtornos do Sono-Vigília/genética , Sono REM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...