Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402391, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669588

RESUMO

High-entropy alloy nanoparticles (HEAs) show great potential in emerging electrocatalysis due to their combination and optimization of multiple elements. However, synthesized HEAs often exhibit a weak interface with the conductive substrate, hindering their applications in long-term catalysis and energy conversion. Herein, a highly active and durable electrocatalyst composed of quinary HEAs (PtNiCoFeCu) encapsulated inside the activated carbonized wood (ACW) is reported. The self-encapsulation of HEAs is achieved during Joule heating synthesis (2060 K, 2 s) where HEAs naturally nucleate at the defect sites. In the meantime, HEAs catalyze the deposition of mobile carbon atoms to form a protective few-layer carbon shell during the rapid quenching process, thus remarkably strengthening the interface stability between HEAs and ACW. As a result, the HEAs@ACW shows not only favorable activity with an overpotential of 7 mV at 10 mA cm-2 for hydrogen evolution but also negligible attenuation during a 500 h stability test, which is superior to most reported electrocatalysts. The design of self-encapsulated HEAs inside ACW provides a critical strategy to enhance both activity and stability, which is also applicable to many other energy conversion technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...