Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2623, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521817

RESUMO

In-plane anisotropic van der Waals materials have emerged as a natural platform for anisotropic polaritons. Extreme anisotropic polaritons with in-situ broadband tunability are of great significance for on-chip photonics, yet their application remains challenging. In this work, we experimentally characterize through Fourier transform infrared spectroscopy measurements a van der Waals plasmonic material, 2M-WS2, capable of supporting intrinsic room-temperature in-plane anisotropic plasmons in the far and mid-infrared regimes. In contrast to the recently revealed natural hyperbolic plasmons in other anisotropic materials, 2M-WS2 supports canalized plasmons with flat isofrequency contours in the frequency range of ~ 3000-5000 cm-1. Furthermore, the anisotropic plasmons and the corresponding isofrequency contours can be reversibly tuned via in-situ ion-intercalation. The tunable anisotropic and canalization plasmons may open up further application perspectives in the field of uniaxial plasmonics, such as serving as active components in directional sensing, radiation manipulation, and polarization-dependent optical modulators.

2.
Nat Commun ; 14(1): 5314, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658093

RESUMO

The evolution of excitons from 2D to 3D is of great importance in photo-physics, yet the layer-dependent exciton polarizability hasn't been investigated in 2D semiconductors. Here, we determine the exciton polarizabilities for 3- to 11-layer black phosphorus-a direct bandgap semiconductor regardless of the thickness-through frequency-resolved photocurrent measurements on dual-gate devices and unveil the carrier screening effect in relatively thicker samples. By taking advantage of the broadband photocurrent spectra, we are also able to reveal the exciton response for higher-index subbands under the gate electrical field. Surprisingly, dark excitons are brightened with intensity even stronger than the allowed transitions above certain electrical field. Our study not only sheds light on the exciton evolution with sample thickness, but also paves a way for optoelectronic applications of few-layer BP in modulators, tunable photodetectors, emitters and lasers.

3.
Light Sci Appl ; 12(1): 193, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553359

RESUMO

Naturally existing in-plane hyperbolic polaritons and the associated optical topological transitions, which avoid the nano-structuring to achieve hyperbolicity, can outperform their counterparts in artificial metasurfaces. Such plasmon polaritons are rare, but experimentally revealed recently in WTe2 van der Waals thin films. Different from phonon polaritons, hyperbolic plasmon polaritons originate from the interplay of free carrier Drude response and interband transitions, which promise good intrinsic tunability. However, tunable in-plane hyperbolic plasmon polariton and its optical topological transition of the isofrequency contours to the elliptic topology in a natural material have not been realized. Here we demonstrate the tuning of the optical topological transition through Mo doping and temperature. The optical topological transition energy is tuned over a wide range, with frequencies ranging from 429 cm-1 (23.3 microns) for pure WTe2 to 270 cm-1 (37.0 microns) at the 50% Mo-doping level at 10 K. Moreover, the temperature-induced blueshift of the optical topological transition energy is also revealed, enabling active and reversible tuning. Surprisingly, the localized surface plasmon resonance in skew ribbons shows unusual polarization dependence, accurately manifesting its topology, which renders a reliable means to track the topology with far-field techniques. Our results open an avenue for reconfigurable photonic devices capable of plasmon polariton steering, such as canaling, focusing, and routing, and pave the way for low-symmetry plasmonic nanophotonics based on anisotropic natural materials.

4.
Nano Lett ; 23(15): 6907-6913, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494570

RESUMO

Stacking bilayer structures is an efficient way to tune the topology of polaritons in in-plane anisotropic films, e.g., by leveraging the twist angle (TA). However, the effect of another geometric parameter, the film thickness ratio (TR), on manipulating the plasmon topology in bilayers is elusive. Here, we fabricate bilayer structures of WTe2 films, which naturally host in-plane hyperbolic plasmons in the terahertz range. Plasmon topology is successfully modified by changing the TR and TA synergistically, manifested by the extinction spectra of unpatterned films and the polarization dependence of the plasmon intensity measured in skew ribbon arrays. Such TR- and TA-tunable topological transitions can be well explained based on the effective sheet optical conductivity by adding up those of the two films. Our study demonstrates TR as another degree of freedom for the manipulation of plasmonic topology in nanophotonics, exhibiting promising applications in biosensing, heat transfer, and the enhancement of spontaneous emission.

5.
Nat Commun ; 14(1): 2716, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169788

RESUMO

One of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon - polariton momentum makes far-field excitation of HPhPs challenging. Here, we propose an In-Plane Hyperbolic Polariton Tuner that is based on patterning van der Waals semiconductors, here α-MoO3, into ribbon arrays. We demonstrate that such tuners respond directly to far-field excitation and give rise to LWIR and THz resonances with high quality factors up to 300, which are strongly dependent on in-plane hyperbolic polariton of the patterned α-MoO3. We further show that with this tuner, intensity regulation of reflected and transmitted electromagnetic waves, as well as their wavelength and polarization selection can be achieved. Our results can help the development of THz and LWIR miniaturized devices.

6.
Phys Rev Lett ; 127(18): 186401, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767429

RESUMO

Through infrared spectroscopy, we systematically study the pressure effect on electronic structures of few-layer black phosphorus (BP) with layer number ranging from 2 to 13. We reveal that the pressure-induced shift of optical transitions exhibits strong layer dependence. In sharp contrast to the bulk counterpart which undergoes a semiconductor to semimetal transition under ∼1.8 GPa, the band gap of 2 L increases with increasing pressure until beyond 2 GPa. Meanwhile, for a sample with a given layer number, the pressure-induced shift also differs for transitions with different indices. Through the tight-binding model in conjunction with a Morse potential for the interlayer coupling, this layer- and transition-index-dependent pressure effect can be fully accounted. Our study paves a way for versatile van der Waals engineering of two-dimensional BP.

7.
Nat Commun ; 12(1): 5628, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561443

RESUMO

Hyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist. Particularly, natural in-plane hyperbolic polaritons in layered materials have been demonstrated in MoO3 and WTe2, which are based on phonon and plasmon resonances respectively. Here, by determining the anisotropic optical conductivity (dielectric function) through optical spectroscopy, we predict that monolayer black phosphorus naturally hosts hyperbolic exciton-polaritons due to the pronounced in-plane anisotropy and strong exciton resonances. We simultaneously observe a strong and sharp ground state exciton peak and weaker excited states in high quality monolayer samples in the reflection spectrum, which enables us to determine the exciton binding energy of ~452 meV. Our work provides another appealing platform for the in-plane natural hyperbolic polaritons, which is based on excitons rather than phonons or plasmons.

8.
Phys Rev Lett ; 126(14): 147401, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891459

RESUMO

Tunable terahertz plasmons are essential for reconfigurable photonics, which have been demonstrated in graphene through gating, though with relatively weak responses. Here we demonstrate strong terahertz plasmons in graphite thin films via infrared spectroscopy, with dramatic tunability by even a moderate temperature change or an in situ bias voltage. Meanwhile, through magnetoplasmon studies, we reveal that massive electrons and massless Dirac holes make comparable contributions to the plasmon response. Our study not only sets up a platform for further exploration of two-component plasmas, but also opens an avenue for terahertz modulation through electrical bias or all-optical means.

9.
Nat Commun ; 12(1): 386, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452268

RESUMO

Plasmons in two-dimensional (2D) materials beyond graphene have recently gained much attention. However, the experimental investigation is limited due to the lack of suitable materials. Here, we experimentally demonstrate localized plasmons in a correlated 2D charge-density-wave (CDW) material: 2H-TaSe2. The plasmon resonance can cover a broad spectral range from the terahertz (40 µm) to the telecom (1.55 µm) region, which is further tunable by changing thickness and dielectric environments. The plasmon dispersion flattens at large wave vectors, resulted from the universal screening effect of interband transitions. More interestingly, anomalous temperature dependence of plasmon resonances associated with CDW excitations is observed. In the CDW phase, the plasmon peak close to the CDW excitation frequency becomes wider and asymmetric, mimicking two coupled oscillators. Our study not only reveals the universal role of the intrinsic screening on 2D plasmons, but also opens an avenue for tunable plasmons in 2D correlated materials.

10.
Phys Rev Lett ; 125(15): 156802, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095618

RESUMO

The temperature dependence of the band gap is crucial to a semiconductor. Bulk black phosphorus is known to exhibit an anomalous behavior. Through optical spectroscopy, here we show that the temperature effect on black phosphorus band gap gradually evolves with decreasing layer number, eventually turns into a normal one in the monolayer limit, rendering a crossover from the anomalous to the normal. Meanwhile, the temperature-induced shift in optical resonance also differs with different transition indices for the same thickness sample. A comprehensive analysis reveals that the temperature-tunable interlayer coupling is responsible for the observed diverse scenario. Our study provides a key to the apprehension of the anomalous temperature behavior in certain layered semiconductors.

11.
Nat Commun ; 11(1): 1847, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296052

RESUMO

The strength of light-matter interaction is of central importance in photonics and optoelectronics. For many widely studied two-dimensional semiconductors, such as MoS2, the optical absorption due to exciton resonances increases with thickness. However, here we will show, few-layer black phosphorus exhibits an opposite trend. We determine the optical conductivity of few-layer black phosphorus with thickness down to bilayer by infrared spectroscopy. On the contrary to our expectations, the frequency-integrated exciton absorption is found to be enhanced in thinner samples. Moreover, the continuum absorption near the band edge is almost a constant, independent of the thickness. We will show such scenario is related to the quanta of the universal optical conductivity of graphene (σ0 = e2/4h), with a prefactor originating from the band anisotropy.

12.
Nat Commun ; 11(1): 1158, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127535

RESUMO

A hyperbolic plasmonic surface supports highly directional propagating polaritons with extremely large density of states. Such plasmon polaritons have been realized in artificially structured metasurfaces. However, the upper bound of the achievable plasmon wave vector is limited by the structure size, which calls for a natural hyperbolic surface without any structuring. Here, we experimentally demonstrate a natural hyperbolic plasmonic surface based on thin films of WTe2 in the light wavelength range of 16 to 23 microns by far infrared absorption spectroscopy. The topological transition from the elliptic to the hyperbolic regime is further manifested by mapping the isofrequency contours of the plasmon. Moreover, the anisotropy character and plasmon frequency exhibit prominent temperature dependence. Our study demonstrates the first natural platform to host 2D hyperbolic plasmons, which opens exotic avenues for the manipulation of plasmon propagation, light-matter interaction and light emission in planar photonics.

13.
Nat Commun ; 10(1): 2447, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164654

RESUMO

Interlayer interactions in 2D materials, also known as van der Waals (vdWs) interactions, play a critical role in the physical properties of layered materials. It is fascinating to manipulate the vdWs interaction, and hence to "redefine" the material properties. Here, we demonstrate that in-plane biaxial strain can effectively tune the vdWs interaction of few-layer black phosphorus with thickness of 2-10 layers, using infrared spectroscopy. Surprisingly, our results reveal that in-plane tensile strain efficiently weakens the interlayer coupling, even though the sample shrinks in the vertical direction due to the Poisson effect, in sharp contrast to one's intuition. Moreover, density functional theory (DFT) calculations further confirm our observations and indicate a dominant role of the puckered lattice structure. Our study highlights the important role played by vdWs interactions in 2D materials during external physical perturbations.

14.
Sci Adv ; 4(3): eaap9977, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29556530

RESUMO

The attraction between electrons and holes in semiconductors forms excitons, which largely determine the optical properties of the hosting material, and hence the device performance, especially for low-dimensional systems. Mono- and few-layer black phosphorus (BP) are emerging two-dimensional (2D) semiconductors. Despite its fundamental importance and technological interest, experimental investigation of exciton physics has been rather limited. We report the first systematic measurement of exciton binding energies in ultrahigh-quality few-layer BP by infrared absorption spectroscopy, with layer (L) thickness ranging from 2 to 6 layers. Our experiments allow us to determine the exciton binding energy, decreasing from 213 meV (2L) to 106 meV (6L). The scaling behavior with layer numbers can be well described by an analytical model, which takes into account the nonlocal screening effect. Extrapolation to free-standing monolayer yields a large binding energy of ~800 meV. Our study provides insights into 2D excitons and their crossover from 2D to 3D, and demonstrates that few-layer BP is a promising high-quality optoelectronic material for potential infrared applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...