Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439620

RESUMO

Rhizobia and arbuscular mycorrhizal fungi (AMF) are symbiotic microorganisms important for plants grown in nutrient-deficient and heavy metal-contaminated soils. However, it remains unclear how plants respond to the coupled stress by heavy metal and nitrogen (N) deficiency under co-inoculation. Here, we investigated the synergistic effect of Mesorhizobium huakuii QD9 and Funneliformis mosseae on the response of black locust (Robinia pseudoacacia L.) grown in sand culture to cadmium (Cd) under N deficiency conditions. The results showed that single inoculation of AMF improved the growth and Cd resistance of black locust, co-inoculation improved the most. Compared to non-inoculated controls, co-inoculation mediated higher biomass and antioxidant enzyme activity, reduced oxidative stress, and promoted nodulation, mycorrhizal colonization, photosynthetic capacity, and N, P, Fe and Mg acquisition when exposed to Cd. This increase was significantly higher under N deficiency compared to N sufficiency. In addition, the uptake of Cd by co-inoculated black locust roots increased, but Cd translocation to the above-ground decreased under both N deficiency and sufficiency. Thus, in the tripartite symbiotic system, not merely metabolic processes but also Cd uptake increased under N deficiency. However, enhanced Cd detoxification in the roots and reduced allocation to the shoot likely prevent Cd toxicity and rather stimulated growth under these conditions.


Assuntos
Micorrizas , Rhizobium , Robinia , Cádmio/toxicidade , Areia , Antioxidantes
2.
J Hazard Mater ; 465: 133236, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141298

RESUMO

Biochar could reshape microbial communities, thereby altering methylmercury (MeHg) concentrations in rice rhizosphere and seeds. However, it remains unclear whether and how biochar amendment perturbs microbe-mediated MeHg production in mercury (Hg) contaminated paddy soil. Here, we used pinecone-derived biochar and its six modified biochars to reveal the disturbance. Results showed that selenium- and chitosan-modified biochar significantly reduced MeHg concentrations in the rhizosphere by 85.83% and 63.90%, thereby decreasing MeHg contents in seeds by 86.37% and 75.50%. The two modified bicohars increased the abundance of putative Hg-resistant microorganisms Bacillus, the dominant microbe in rhizosphere. These reductions about MeHg could be facilitated by biochar sensitive microbes such as Oxalobacteraceae and Subgroup_7. Pinecone-derived biochar increased MeHg concentration in rhizosphere but unimpacted MeHg content in seeds was observed. This biochar decreased the abundance in Bacillus but enhanced in putative Hg methylator Desulfovibrio. The increasing MeHg concentration in rhizosphere could be improved by biochar sensitive microbes such as Saccharimonadales and Clostridia. Network analysis showed that Saccharimonadales and Clostridia were the most prominent keystone taxa in rhizosphere, and the three biochars manipulated abundances of the microbes related to MeHg production in rhizosphere by those biochar sensitive microbes. Therefore, selenium- and chitosan-modified biochar could reduce soil MeHg production by these microorganisms, and is helpful in controlling MeHg contamination in rice.


Assuntos
Carvão Vegetal , Quitosana , Mercúrio , Compostos de Metilmercúrio , Oryza , Selênio , Poluentes do Solo , Compostos de Metilmercúrio/análise , Poluentes do Solo/análise , Mercúrio/análise , Solo
3.
J Environ Manage ; 344: 118640, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478720

RESUMO

Anaerobic digestion (AD) with municipal wastewater contained heavy metal mercury (Hg) highly affects the utilization of activated sludge, and poses severe threat to the health of human beings. However, the biogeochemical transformation of Hg during AD remains unclear. Here, we investigated the biogeochemical transformation and environmental characteristics of Hg and the variations of dominant microbes during AD. The results showed that Hg(II) methylation is dominant in the early stage of AD, while methylmercury (MeHg) demethylation dominates in the later stage. Dissolved total Hg (DTHg) in the effluent sludge decreased with time, while THg levels enhanced to varying degrees at the final stage. Sulfate significant inhibits MeHg formation, reduces bioavailability of Hg(II) by microbes and thus inhibits Hg(II) methylation. Microbial community analysis reveals that strains in Methanosarcina and Aminobacterium from the class of Methanomicrobia, rather than Deltaproteobacteria, may be directly related to Hg(II) methylation and MeHg demethylation. Overall, this research provide insights into the biogeochemical transformation of Hg in the anaerobic digestion of municipal wastewater treatment. This work is beneficial for scientific treatment of municipal wastewater and effluent sludge, thus reducing the risk of MeHg to human beings.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Humanos , Mercúrio/análise , Águas Residuárias , Esgotos , Anaerobiose
4.
J Hazard Mater ; 442: 130064, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182885

RESUMO

Previous research has found total mercury (THg) and methylmercury (MeHg) levels increase with litterfall decay, thus suggesting litterfall decomposition plays an essential role in the biogeochemical transformation of mercury (Hg). However, it remains unclear how Hg accumulates in the decaying litter, how bacterial taxa networks vary and what roles various microorganisms play during litterfall decomposition, especially nitrogen (N)-fixing, MeHg-degrading and Hg-methylating microbes. Here, we demonstrated as degradation proceeded, a gradually-complex network evolved for litterfall bacteria for the subtropical mixed broadleaf-conifer (MBC) forest, whereas a relatively static network existed for the evergreen broadleaf (EB) forest. N-fixing and MeHg-degrading bacteria dominated throughout litterfall decomposition process, with relative abundances of N-fixing genera and nifH copies maximum and relative abundances of MeHg-degrading bacteria and merAB copies minimum in summer. Hence, N-fixing bacteria likely mediate THg increase in the decomposing litterfall, while MeHg enhancement may be regulated by aerobic MeHg-degrading microbes which can transform MeHg to inorganic divalent Hg (Hg2+) or further to elemental Hg (Hg0). Together, this work elucidates variations of N-fixing and MeHg-degrading microbes in decaying litterfall and their relationships with Hg accumulation, providing novel insights into understanding the biogeochemical cycle of Hg in the forest ecosystem.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/química , Mercúrio/análise , Ecossistema , Nitrogênio , Estações do Ano , Monitoramento Ambiental , Bactérias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...