Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(19): 7360-7366, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697955

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, which has witnessed over 772 million confirmed cases and over 6 million deaths globally, the outbreak of COVID-19 has emerged as a significant medical challenge affecting both affluent and impoverished nations. Therefore, there is an urgent need to explore the disease mechanism and to implement rapid detection methods. To address this, we employed the desorption separation ionization (DSI) device in conjunction with a mass spectrometer for the efficient detection and screening of COVID-19 urine samples. The study encompassed patients with COVID-19, healthy controls (HC), and patients with other types of pneumonia (OP) to evaluate their urine metabolomic profiles. Subsequently, we identified the differentially expressed metabolites in the COVID-19 patients and recognized amino acid metabolism as the predominant metabolic pathway involved. Furthermore, multiple established machine learning algorithms validated the exceptional performance of the metabolites in discriminating the COVID-19 group from healthy subjects, with an area under the curve of 0.932 in the blind test set. This study collectively suggests that the small-molecule metabolites detected from urine using the DSI device allow for rapid screening of COVID-19, taking just three minutes per sample. This approach has the potential to expand our understanding of the pathophysiological mechanisms of COVID-19 and offers a way to rapidly screen patients with COVID-19 through the utilization of machine learning algorithms.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/urina , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Pandemias , Masculino , Pneumonia Viral/diagnóstico , Pneumonia Viral/urina , Pneumonia Viral/virologia , Pessoa de Meia-Idade , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/urina , Feminino , Betacoronavirus/isolamento & purificação , Espectrometria de Massas/métodos , Adulto , Metabolômica/métodos , Idoso , Aprendizado de Máquina
2.
Anal Chem ; 96(17): 6511-6516, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38634936

RESUMO

Charge detection quadrupole ion trap mass spectrometry (CD-QIT MS) is an effective way of achieving the mass analysis of microparticles with ultrahigh mass. However, its mass accuracy and resolution are still poor. To enhance the performance of CD-QIT MS, the resolution Rpeak of each peak in the mass spectra resulting from an individual particle was assessed, and a peak filtering algorithm that can filter out particle adducts and clusters with a lower Rpeak was proposed. By using this strategy, more accurate mass information about the analyzed particles could be obtained, and the mass resolution of CD-QIT MS was improved by nearly 2-fold, which was demonstrated by using the polystyrene (PS) particle size standards and red blood cells (RBCs). Benefiting from these advantages of the peak filtering algorithm, the baseline separation and relative quantification of 3 and 4 µm PS particles were achieved. To prove the application value of this algorithm in a biological system, the mass of yeast cells harvested at different times was measured, and it was found that the mixed unbudded and budded yeast cells, which otherwise would not be differentiable, were distinguished and quantified with the algorithm.


Assuntos
Algoritmos , Espectrometria de Massas , Tamanho da Partícula , Poliestirenos , Poliestirenos/química , Espectrometria de Massas/métodos , Eritrócitos/citologia , Eritrócitos/química , Saccharomyces cerevisiae , Humanos
3.
Chem Commun (Camb) ; 59(65): 9852-9855, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37490058

RESUMO

Precision diagnosis and classification of autoimmune diseases (ADs) is challenging due to the obscure symptoms and pathological causes. Biofluid metabolic analysis has the potential for disease screening, in which high throughput, rapid analysis and minimum sample consumption must be addressed. Herein, we performed metabolomic profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) in urine and serum samples. Combined with machine learning (ML), metabolomic patterns from urine achieved the discrimination and classification of ADs with high accuracy. Furthermore, metabolic disturbances among different ADs were also investigated, and provided information of etiology. These results demonstrated that urine metabolic patterns based on MALDI-MS and ML manifest substantial potential in precision medicine.


Assuntos
Aprendizado de Máquina , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Anal Chem ; 95(10): 4612-4618, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36862115

RESUMO

Analysis of volume-limited biological samples such as single cells and biofluids not only benefits clinical purposes but also promotes fundamental research in life sciences. Detection of these samples, however, imposes strict requirements on measurement performance because of the minimal volume and concentrated salts of the samples. Herein, we developed a self-cleaning nanoelectrospray ionization device powered by a pocket-size "MasSpec Pointer" (MSP-nanoESI) for metabolic analysis of salty biological samples with limited volume. The self-cleaning effect induced by Maxwell-Wagner electric stress helps with keeping the borosilicate glass capillary tip free from clogging and thus increasing salt tolerance. This device possesses a high sample economy (about 0.1 µL per test) due to its pulsed high voltage supply, sampling method (dipping the nanoESI tip into analyte solution), and contact-free electrospray ionization (ESI) (the electrode does not touch the analyte solution during ESI). High repeatable results could be acquired by the device with a relative standard deviation (RSD) of 1.02% for voltage output and 12.94% for MS signals of caffeine standard. Single MCF-7 cells were metabolically analyzed directly from phosphate buffered saline, and two types of untreated cerebrospinal fluid from hydrocephalus patients were distinguished with 84% accuracy. MSP-nanoESI gets rid of the bulky apparatus and could be held in hand or put into one's pocket for transportation, and it could operate for more than 4 h without recharge. We believe this device will boost scientific research and clinical usage of volume-limited biological samples with high-concentration salts in a low-cost, convenient, and rapid manner.


Assuntos
Sais , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
ACS Nano ; 17(5): 4463-4473, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802559

RESUMO

Simultaneous imaging of exogenous nanomaterials and endogenous metabolites in situ remains challenging and is beneficial for a systemic understanding of the biological behavior of nanomaterials at the molecular level. Here, combined with label-free mass spectrometry imaging, visualization and quantification of the aggregation-induced emission nanoparticles (NPs) in tissue were realized as well as related endogenous spatial metabolic changes simultaneously. Our approach enables us to identify the heterogeneous deposition and clearance behavior of nanoparticles in organs. The accumulation of nanoparticles in normal tissues results in distinct endogenous metabolic changes such as oxidative stress as indicated by glutathione depletion. The low passive delivery efficiency of nanoparticles to tumor foci suggested that the enrichment of NPs in tumors did not benefit from the abundant tumor vessels. Moreover, spatial-selective metabolic changes upon NPs mediated photodynamic therapy was identified, which enables understanding of the NPs induced apoptosis in the process of cancer therapy. This strategy allows us to simultaneously detect exogenous nanomaterials and endogenous metabolites in situ, hence to decipher spatial selective metabolic changes in drug delivery and cancer therapy processes.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Sistemas de Liberação de Medicamentos , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanopartículas/química , Imagem Óptica/métodos , Linhagem Celular Tumoral
6.
Anal Chem ; 94(29): 10367-10374, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35839421

RESUMO

Liver cancer (LC) is the third frequent cause of death worldwide, so early diagnosis of liver cancer patients is crucial for disease management. Herein, we applied NH2-coated polystyrene@Fe3O4 magnetic beads (PS@Fe3O4-NH2 MBs) as a matrix material in laser desorption/ionization mass spectrometry (LDI-MS). Rapid, sensitive, and selective metabolic profiling of the native biofluids was achieved without any inconvenient enrichment or purification. Then, based on the selected m/z features, LC patients were discriminated from healthy controls (HCs) by machine learning, with the high area under the curve (AUC) values for urine and serum assessments (0.962 and 0.935). Moreover, initial-diagnosed and subsequent-visited LC patients were also differentiated, which indicates potential applications of this method in early diagnosis. Furthermore, among these identified compounds by FT-ICR MS, the expression level of some metabolites changed from HCs to LCs, including 29 and 12 characteristic metabolites in human urine and serum samples, respectively. These results suggest that PS@Fe3O4-NH2 MBs-assisted LDI-MS coupled with machine learning is feasible for LC clinical diagnosis.


Assuntos
Detecção Precoce de Câncer , Neoplasias Hepáticas , Humanos , Lasers , Neoplasias Hepáticas/diagnóstico , Fenômenos Magnéticos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
Anal Chem ; 94(27): 9894-9902, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762528

RESUMO

The diagnosis of bladder cancer (BC) is currently based on cystoscopy, which is invasive and expensive. Here, we describe a noninvasive profiling method for carbonyl metabolic fingerprints in BC, which is based on a desorption, separation, and ionization mass spectrometry (DSI-MS) platform with N,N-dimethylethylenediamine (DMED) as a differential labeling reagent. The DSI-MS platform avoids the interferences from intra- and/or intersamples. Additionally, the DMED derivatization increases detection sensitivity and distinguishes carboxyl, aldehyde, and ketone groups in untreated urine samples. Carbonyl metabolic fingerprints of urine from 41 BC patients and 41 controls were portrayed and 9 potential biomarkers were identified. The mechanisms of the regulations of these biomarkers have been tentatively discussed. A logistic regression (LR) machine learning algorithm was applied to discriminate BC from controls, and an accuracy of 85% was achieved. We believe that the method proposed here may pave the way toward the point-of-care diagnosis of BC in a patient-friendly manner.


Assuntos
Neoplasias da Bexiga Urinária , Aldeídos , Biomarcadores , Biomarcadores Tumorais/urina , Humanos , Espectrometria de Massas , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina
8.
Anal Chem ; 94(6): 2686-2692, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35112854

RESUMO

Mass spectrometry (MS) has emerged as an excellent tool for the characterization of metal-organic frameworks (MOFs) based on the characteristic metal ions and organic ligands. Mass measurement of intact MOF nanocrystals, however, remains a challenge for MS technology. Here, we reported the development of a probe particles based charge detection-quadrupole ion trap mass spectrometry (probe CD-QIT MS) method, where charge detection and mass measurement of a single MOF nanocrystal were achieved under the assistance of probe particles of micrometer size. As a validation of the method, the masses of a series of polystyrene (PS) size standards from 493 nm to 1.6 µm were measured with 3 µm PS particles as probes, and the measured masses were found to match well with their certified masses. Then, charge detections and mass analysis of single ZIF-8 and GOx@ZIF-8 with a size around 600 nm were achieved successfully. The method presented here demonstrates simplicity, high speed, and accuracy. Notably, it allows quantitative measurement of the amount of immobilized GOx enzyme by using the mass difference between ZIF-8 and GOx@ZIF-8. In addition, based on the determined mass, the size analysis of these MOF particles with irregular shape was carried out and demonstrated to be complementary to transmission electron microscopy (TEM).


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Enzimas Imobilizadas/química , Íons , Estruturas Metalorgânicas/química , Poliestirenos
9.
Chemistry ; 28(13): e202103710, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897857

RESUMO

Understanding the fate of nanoscale particles (NPs) in biological systems is significant with the increasing risk for human exposure. Recent research endeavors in laser desorption/ionization mass spectrometry imaging (LDI-MSI) have enriched the toolbox for evaluation of NPs' behavior in biological tissues, especially in aspects including sub-organ bio-distribution, clearance, quantification and surface chemistry variation analysis. In recognition of the potential for advancement in LDI MSI, this concept provides a brief overview of recent research works in LDI MSI for NPs, illustrates new applications that demonstrate the superiority of this technique, and highlights a series of perspectives and directions to move the field forward.


Assuntos
Imagem Molecular , Nanopartículas , Humanos , Lasers , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrofotometria
10.
Anal Chem ; 93(39): 13326-13333, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569226

RESUMO

Current ambient ionization sources for mass spectrometry (MS) are typically connected to gas cylinders, high-voltage supply, injection pump, and other accessory equipment, which hinder the popularization of MS in the field of on-site detection. Here, we developed a wireless pocket-size "MasSpec Pointer" (weights 65 g) based on arc discharge powered by a 3.7 V polymer Li battery for ambient ionization MS. A high voltage of 5600 V and 20 kHz was generated from the boost coil to penetrate air and form a plasma. The relative standard deviation (RSD) of the high-voltage pulses is 3.8%, leading to a stable discharge and a good quantification performance. A mini diaphragm pump was used to cool the plasma from ∼600 to ∼40 °C and to blow the plasma into a jet, which facilitates sampling. MasSpec Pointer can work well at both positive- and negative-ion modes without any modification and can quickly test gaseous, liquid, or solid samples. The limit of detection of this device for atrazine (an agrochemical) is lower than 0.1 ng/mL. MasSpec Pointer has shown its ability to pinpoint the double-bond location of fatty acid isomers without derivatization reagents or light illumination. Agrochemicals from the surface of an apple and daily chemicals from the surface of a finger were detected successfully using MasSpec Pointer coupled with a miniature mass spectrometer. We believe the "point-and-shoot" device coupled with mini-MS brings the hope for an age of detecting chemicals on-site by nonprofessionals.


Assuntos
Espectrometria de Massas
11.
Angew Chem Int Ed Engl ; 60(43): 23225-23231, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34254412

RESUMO

The inhalation of atmospheric particles is deleterious to human health. However, as a complex mixture, tracing the behaviors of multiple components from real aerosol particles is crucial but unachievable by the existing methods. Here, taking advantage of the intrinsic fingerprints of elemental carbon (EC) and organic carbon (OC) in carbonaceous aerosol (CA) upon laser irradiation, we proposed a label-free mass spectrometry imaging method to visualize and quantify the deposition, translocation and component variation of CA in organs. With this method, the heterogeneous deposition, clearance and release behavior of CA in lung, that more OC was released in parenchyma and OC was cleared faster than EC, was observed. The translocation of CA to extrapulmonary organs including kidney, liver, spleen and even brain was also verified and quantified. By comparing the ratio of OC to EC, an organ-specific release behavior of OC from CA during circulation was revealed. In orthotopic lung and liver tumor, OC was found to penetrate more into tumor foci than EC. This technique provides deeper information for understanding the systemic health effects of aerosol particles.

14.
Anal Bioanal Chem ; 413(4): 1099-1106, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388931

RESUMO

We develop a capillary-paper spray (CPS) ion source which allows for sample separation in the capillary and enables rapid and sensitive paper spray (PS) mass spectrometry (MS) analysis of biofluids. The CPS employs a glass capillary to load liquid analytes, vertically standing at the rear of the PS. To further reduce the matrix effect, a nitrocellulose filter membrane is placed between the glass tube and chromatography paper to absorb proteins and other macromolecules, which is beneficial for the detection of the small molecules. Compared with the normal PS method, the CPS method markedly improves spray stability and prolongs analysis duration, and also generates significantly better signal intensities during the analysis of drugs, thus indicating its potential for clinical use. As a proof of concept, quantitative analysis of drugs (metformin hydrochloride and berberine hydrochloride) in serum is performed.


Assuntos
Berberina/análise , Hipoglicemiantes/análise , Espectrometria de Massas/instrumentação , Metformina/análise , Animais , Berberina/sangue , Bovinos , Desenho de Equipamento , Hipoglicemiantes/sangue , Metformina/sangue , Papel , Soro/química
15.
Food Chem ; 338: 127984, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33092001

RESUMO

Mass spectrometry imaging (MSI) is a powerful technique for investigating the biomolecular locations within tissues. However, the isomeric compounds are rarely distinguished due to inability of MSI to differentiate isomers in the probing area. Coupling tandem mass spectrometry with MSI can facilitate differentiating isomeric compounds. Here MALDI-TOF/TOF tandem mass spectrometry imaging approach was applied to probing the spatial distributions of isomeric disaccharides in plant tissues. First, MS/MS imaging analysis of disaccharide-matrix droplet spots demonstrated the feasibility of distinguishing isomeric species in tissues, by measuring the relative intensity of specific fragments. Then, tandem MS imaging of disaccharides in onion bulb tissues indicated that sucrose and other unknown non-sucrose disaccharides exhibit heterogeneous locations throughout the tissues. This method enables us to image disaccharide isomers differentially in biological tissues, and to discover new saccharide species in plant. This work also emphasizes the necessity of considering isobaric compounds when interpreting MSI results.


Assuntos
Dissacarídeos/análise , Cebolas/metabolismo , Espectrometria de Massas em Tandem/métodos , Isomerismo , Raízes de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sacarose/análise
16.
ACS Appl Mater Interfaces ; 13(1): 1914-1920, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33378159

RESUMO

Graphdiyne (GD) is a new kind of carbon nanomaterial which has carbon-carbon triple bonds to form a layered structure. Here, we report the application of GD as the matrix for small molecule analysis in laser desorption ionization mass spectrometry (LDI MS). The GD matrix displayed two advantages: little background in the low mass range and good molecular ion signal in negative ion mode for many small molecules, e.g., fatty acids, amino acids, peptides, and drugs can be obtained in negative ion mode. By comparing the signal intensity of tetraphenylborate and juglone with and without GD existing, it was found that GD can enhance both of the desorption efficiency and ionization efficiency in LDI. Through analysis of the serum samples from liver cancer patients and healthy people, the GD-assisted LDI MS results showed that fatty acids could be used as potential biomarkers for the early diagnosis of liver cancer.


Assuntos
Aminoácidos/análise , Ácidos Graxos/sangue , Grafite/química , Compostos Orgânicos/análise , Preparações Farmacêuticas/análise , Biomarcadores Tumorais/sangue , Humanos , Limite de Detecção , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
17.
Anal Chem ; 92(9): 6564-6570, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32286049

RESUMO

Here we report a semiconductor-assisted laser desorption/ionization mass spectrometry (SA-LDI MS) platform to monitor photocatalytic reactions online and apply it for ultrafast reaction screening. In this method, we use photocatalytic nanomaterials as the substrate for LDI and then initiate and monitor the reactions simultaneously. The features of our method include the following: (i) It has a reaction acceleration effect: only seconds are needed in our interfacial reactions vs hours in conventional bulk phase. (ii) The reaction trend in our system agrees with that in bulk phase. (iii) By adding a stable analogue of reactant as internal standard, a quantification of the reaction can be achieved. (iv) The sensitivity is high: for 500 amol of reactant, the photocatalytic reaction can still be initiated and detected. This platform has advantages in ultrafast reaction screening (e.g., screening of nine catalysts requires 24 h by the UPLC-MS system but only 10 min by SA-LDI MS). Furthermore, the high specificity of MS enables the screening of catalytic selectivity of A-TiO2 nanoparticles for a methyl red (MR) and acid yellow (AY) mixture, whose absorption wavelengths are overlapped and thus cannot be discriminated by conventional optical methods. Furthermore, by using SA-LDI MS, we also monitored reductive debrominations during the degradation process of polybrominated diphenyl ethers (PBDEs), which is a type of important pollutant that is difficult to degrade and detect in liquid phase, and the photocatalytic reduction of CO2. Overall, SA-LDI MS realizes ultrafast photocatalytic reaction screening for the first time and provides practical analytical value in the field of catalyst screening.

18.
Chem Sci ; 11(4): 1176, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-34084375

RESUMO

[This corrects the article DOI: 10.1039/C9SC03912K.].

19.
Anal Chem ; 91(21): 13508-13513, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31608618

RESUMO

The physical properties of microparticles, such as mass, size, and density, are critical for their functions. The comprehensive characterization of these physical parameters, however, remains a fundamental challenge. Here, we developed a particle mass spectrometry (PMS) methodology for determining the mass, size, and density of microparticles simultaneously. The collisional cross-section (CCS) and mass spectrometry (MS) measurements were performed in a single quadrupole ion trap (QIT), and the two modes can be switched easily by tuning the electric and gas hydrodynamic fields of the QIT. The feasibility of the method was demonstrated through a series of monodispersed polystyrene (PS) and silica (SiO2) particle standards. The SiO2/polypyrrole core-shell particles were also successfully characterized, and the measured results were verified by using conventional methods.

20.
Analyst ; 144(23): 7017-7023, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31647064

RESUMO

The rapid identification of human body fluids is meaningful for forensic casework. However, current methods suffer from several limitations such as poor sensitivity, time consumption and big sample consumption. Herein, we developed a mass spectrometry method to distinguish human body fluids (blood, semen, urine, sweat, and saliva) based on small molecular regions with no pretreatment, microliter sample consumption and high throughput. A highly sensitive and high salt-tolerance matrix N-(1-naphthyl)ethylenediamine dihydrochloride (NEDC) was used to efficiently detect metabolites in complex humoral environment. Some characteristic small metabolic molecules such as heme, hemin, creatinine, phosphate acid, uric acid, citric acid and lactic acid were identified and served as potential biomarkers to differentiate different body fluid types. Further principal component analysis (PCA) was performed to cluster the body fluid samples and three principal components allowed 75% clustering of all body fluid types. Blind testing revealed that nine out of ten unknown body fluid samples could be correctly classified into their corresponding group. This novel method can efficiently differentiate five body fluids with minimal interferences due to the storage time (less than 12 months) and carrier materials (cotton, fabric and tissue). The whole process from sampling to recording of mass spectra of body fluids can be finished in less than 10 minutes. We believe that this developed strategy has significant implications for rapid and effective human body fluid screening in forensic casework.


Assuntos
Análise Química do Sangue/métodos , Saliva/química , Sêmen/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Suor/química , Urina/química , Adolescente , Adulto , Biomarcadores/análise , Etilenodiaminas/química , Feminino , Ciências Forenses/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...