Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Heliyon ; 9(11): e21282, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964828

RESUMO

Osteoarthritis (OA) is a prevalent chronic degenerative joint disease worldwide. Obesity has been linked to OA, and increased free fatty acid levels (e.g., palmitate) contribute to inflammatory responses and cartilage degradation. Xanthohumol (Xn), a bioactive prenylated chalcone, was shown to exhibit antioxidative, anti-inflammatory, and anti-obesity capacities in multiple diseases. However, a clear description of the preventive effects of Xn on obesity-associated OA is unavailable. This study aimed to assess the chondroprotective function of Xn on obesity-related OA. The in vitro levels of inflammatory and ECM matrix markers in human chondrocytes were assessed after the chondrocytes were treated with PA and Xn. Additionally, in vivo cartilage degeneration was assessed following oral administration of HFD and Xn. This study found that Xn treatment completely reduces the inflammation and extracellular matrix degradation caused by PA. The proposed mechanism involves AMPK signaling pathway activation by Xn, which increases mitochondrial biogenesis, attenuates mitochondrial dysfunction, and inhibits NLRP3 inflammasome and the NF-κB signaling pathway induced by PA. In summary, this study highlights that Xn could decrease inflammation reactions and the degradation of the cartilage matrix induced by PA by inhibiting the NLRP3 inflammasome and attenuating mitochondria dysfunction in human chondrocytes.

2.
Oncol Lett ; 26(4): 454, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37720673

RESUMO

[This retracts the article DOI: 10.3892/ol.2018.7994.].

3.
Bioengineered ; 14(1): 113-128, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377390

RESUMO

HIGHLIGHTS: Extracellular vehicles play crucial function in osteosarcoma tumorigenesis.Extracellular vehicles mediated the intercellular communication of osteosarcoma cells with other types cells in tumor microenvironment.Extracellular vehicles have potential utility in osteosarcoma diagnosis and treatment.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Osteossarcoma , Humanos , Comunicação Celular , Osteossarcoma/patologia , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Ósseas/patologia , Microambiente Tumoral
4.
Biofactors ; 49(1): 21-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32997846

RESUMO

Myostatin, a member of the transforming growth factor-ß (TGF-ß) superfamily, is a key autocrine/paracrine inhibitor of skeletal muscle growth. Recently, researchers have postulated that myostatin is a negative regulator of bone formation and metabolism. Reportedly, myostatin is highly expressed in the fracture area, affecting the endochondral ossification process during the early stages of fracture healing. Furthermore, myostatin is highly expressed in the synovium of patients with rheumatoid arthritis (RA) and is an effective therapeutic target for interfering with osteoclast formation and joint destruction in RA. Thus, myostatin is a potent anti-osteogenic factor and a direct modulator of osteoclast differentiation. Evaluation of the molecular pathway revealed that myostatin can activate SMAD and mitogen-activated protein kinase signaling pathways, inhibiting the Wnt/ß-catenin pathway to synergistically regulate muscle and bone growth and metabolism. In summary, inhibition of myostatin or the myostatin signaling pathway has therapeutic potential in the treatment of orthopedic diseases. This review focused on the effects of myostatin on bone formation and metabolism and discussed the potential therapeutic effects of inhibiting myostatin and its pathways in related orthopedic diseases.


Assuntos
Miostatina , Osteogênese , Humanos , Miostatina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Músculo Esquelético/metabolismo
5.
J Transl Med ; 20(1): 515, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348497

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Cartilagem Articular/patologia , Osteoartrite/terapia , Osteoartrite/patologia , Diferenciação Celular
6.
Int J Mol Med ; 50(5)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36102306

RESUMO

Osteoarthritis (OA) is the most common degenerative disease affecting the joints, and inflammation appears to play a critical role in the initiation and progression of OA. Caffeic acid phenethyl ester (CAPE), a natural flavonoid compound, has anti­inflammatory and antioxidant functions. However, its anti­inflammatory effects on OA and the underlying mechanisms of action of CAPE in the treatment of OA remain elusive. Therefore, the present study investigated the anti­inflammatory effects of CAPE on IL­1ß­stimulated chondrocytes in vitro and surgically induced rat models of OA in vivo. In vitro, CAPE reduced the expression of inducible nitric oxide synthase and cyclooxygenase­2 in IL­1ß­stimulated chondrocytes, as well as the extracellular secretion of nitric oxide and prostaglandin E2 in the cell culture supernatants. In addition, CAPE attenuated the degradation of extracellular matrix by increasing the expression of aggrecan and collagen II, and decreasing the expression of MMP3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motif­5. Furthermore, CAPE attenuated NF­κB signaling and activated the nuclear factor erythroid 2­related factor 2/heme oxygenase­1 signaling pathway in IL­1ß­stimulated chondrocytes. In vivo, CAPE protected cartilage from destruction and delayed the progression of OA in rats. Taken together, the findings of the present study indicated that CAPE may be a potential therapeutic agent for the prevention or treatment of OA.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , NF-kappa B , Osteoartrite , Animais , Anti-Inflamatórios/farmacologia , Ácidos Cafeicos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Álcool Feniletílico/análogos & derivados , Ratos , Transdução de Sinais
7.
Front Cell Dev Biol ; 10: 954376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003144

RESUMO

Osteoarthritis (OA) is a common chronic degenerative joint disease worldwide. The pathological features of OA are the erosion of articular cartilage, subchondral bone sclerosis, synovitis, and metabolic disorder. Its progression is characterized by aberrant expression of genes involved in inflammation, proliferation, and metabolism of chondrocytes. Effective therapeutic strategies are limited, as mechanisms underlying OA pathophysiology remain unclear. Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying OA focused on gene transcription. However, posttranscriptional alterations also play significant function in inflammation and metabolic changes related diseases. RNA binding proteins (RBPs) have been recognized as important regulators in posttranscriptional regulation. RBPs regulate RNA subcellular localization, stability, and translational efficiency by binding to their target mRNAs, thereby controlling their protein expression. However, their role in OA is less clear. Identifying RBPs in OA is of great importance to better understand OA pathophysiology and to figure out potential targets for OA treatment. Hence, in this manuscript, we summarize the recent knowledge on the role of dysregulated RBPs in OA and hope it will provide new insight for OA study and targeted treatment.

8.
Int J Bioprint ; 8(2): 517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669327

RESUMO

Artificial skins are biomaterials that can replace the lost skin or promote the regeneration of damaged skin. Skin regenerative biomaterials are highly applauded because they can exempt patients with severe burns from the painful procedure of autologous skin transplantation. Notwithstanding decades of research, biocompatible, degradable, and printable biomaterials that can effectively promote skin regeneration as a transplantation replacement in clinical use are still scarce. Here, we report one type of all-protein hydrogel material as the product of the enzymatic crosslinking reaction of gelatin and a recombinant type III collagen (rColIII) protein. Doping the rColIII protein in gelatin reduces the inflammatory response as an implant underneath the skin. The all-protein hydrogel can be bioprinted as scaffolds to support the growth and proliferation of 3T3 fibroblast cells. The hydrogel used as a wound dressing promotes wound healing in a rat model of skin damage, showing a faster and healthier recovery than the controls. The rColIII protein in the hydrogel has been shown to play a critical role in skin regeneration. Altogether, this work manifests the development of all-protein gelatin-rColIII hydrogel and demonstrates its use in wound healing. The gelatin-collagen hydrogel wound dressing thereby may become a promising treatment of severe wounds in the future.

9.
Gels ; 8(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35200519

RESUMO

Tissue engineering is becoming an effective strategy for repairing cartilage damage. Synthesized nanocomposite hydrogels mimic the structure of natural cartilage extracellular matrices (ECMs), are biocompatible, and exhibit nano-bio effects in response to external stimuli. These inherent characteristics make nanocomposite hydrogels promising scaffold materials for cartilage tissue engineering. This review summarizes the advances made in the field of nanocomposite hydrogels for artificial cartilage. We discuss, in detail, their preparation methods and scope of application. The challenges involved for the application of hydrogel nanocomposites for cartilage repair are also highlighted.

10.
Mol Med Rep ; 25(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35088882

RESUMO

Osteoarthritis (OA), one of the most common joint diseases, is characterized by fibrosis, rhagadia, ulcers and attrition of articular cartilage due to a number of factors. The etiology of OA remains unclear, but its occurrence has been associated with age, obesity, inflammation, trauma and genetic factors. Inflammatory cytokines are crucial for the occurrence and progression of OA. The intra­articular proinflammatory and anti­inflammatory cytokines jointly maintain a dynamic balance, in accordance with the physiological metabolism of articular cartilage. However, dynamic imbalance between proinflammatory and anti­inflammatory cytokines can cause abnormal metabolism in knee articular cartilage, which leads to deformation, loss and abnormal regeneration, and ultimately destroys the normal structure of the knee joint. The ability of articular cartilage to self­repair once damaged is limited, due to its inability to obtain nutrients from blood vessels, nerves and lymphatic vessels, as well as limitations in the extracellular matrix. There are several disadvantages inherent to conventional repair methods, while cartilage tissue engineering (CTE), which combines proinflammatory and anti­-inflammatory cytokines, offers a new therapeutic approach for OA. The aim of the present review was to examine the proinflammatory factors implicated in OA, including IL­1ß, TNF­α, IL­6, IL­15, IL­17 and IL­18, as well as the key anti­inflammatory factors reducing OA­related articular damage, including IL­4, insulin­like growth factor and TGF­ß. The predominance of proinflammatory over anti­inflammatory cytokine effects ultimately leads to the development of OA. CTE, which employs mesenchymal stem cells and scaffolding technology, may prevent OA by maintaining the homeostasis of pro­ and anti­inflammatory factors.


Assuntos
Cartilagem Articular , Osteoartrite , Anti-Inflamatórios/uso terapêutico , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Citocinas/metabolismo , Humanos , Osteoartrite/tratamento farmacológico , Osteoartrite/terapia , Engenharia Tecidual
13.
Stem Cells Int ; 2021: 1285087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567129

RESUMO

Wound healing and regeneration are a dynamic and complex process that requires a collaborative effort between growth factors, epidermal cells, dermal cells, extracellular matrix, and vessels local to the wound area. Mesenchymal stem cells participate in the recruitment site, mainly by releasing secretory factors and matrix proteins to promote wound healing. Stem cell-derived nanovesicles (CDNs), including microvesicles, exosomes, and exosome mimetics, contain most of the biologically active substances of their parent cells and have similar effects. CDNs can shuttle various proteins, messenger RNAs, and microRNAs to regulate the activity of receptor cells, and they play important roles in skin wound healing. This article reviews recent research progress on CDNs for wound repair. We summarize current knowledge on how CDNs regulate immunity, fibroblast activity, angiogenesis, and scar formation in the wound healing process. This review can help researchers explore new treatment strategies to enhance the therapeutic efficacy of CDNs, which have a promising future as naturally cell-free therapies.

14.
Gels ; 7(3)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34563030

RESUMO

Three-dimensional (3D) bioprinting is an emerging technology based on 3D digital imaging technology and multi-level continuous printing. The precise positioning of biological materials, seed cells, and biological factors, known as "additive biomanufacturing", can provide personalized therapy strategies in regenerative medicine. Over the last two decades, 3D bioprinting hydrogels have significantly advanced the field of cartilage and bone tissue engineering. This article reviews the development of 3D bioprinting and its application in cartilage tissue engineering, followed by a discussion of the current challenges and prospects for 3D bioprinting. This review presents foundational information on the future optimization of the design and manufacturing process of 3D additive biomanufacturing.

15.
Biomed Pharmacother ; 139: 111720, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243620

RESUMO

MicroRNAs(miRNAs) are small non-coding RNAs which have a critical role in various biological processes via direct binding and post-transcriptionally regulating targeted genes expression. More than one-half of human genes were regulated by miRNAs and their aberrant expression was detected in various human diseases, including cancers. miRNA-338 is a new identified miRNA and increasing evidence show that miRNA-338 participates in the progression of lots of cancers, such as lung cancer, hepatocellular cancer, breast cancer, glioma, and so on. Although a range of targets and signaling pathways such as MACC1 and Wnt/ß-catenin signaling pathway were illustrated to be regulated by miRNA-338, which functions in tumor progression are still ambiguous and the underlying molecular mechanisms are also unclear. Herein, we reviewed the latest studies in miRNA-338 and summarized its roles in different type of human tumors, which might provide us new idea for further investigations and potential targeted therapy.


Assuntos
Carcinogênese/genética , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia , Animais , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais/genética
16.
Nanoscale ; 13(19): 8740-8750, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33969373

RESUMO

With the development of regenerative medicine, tissue repair at the molecular, cellular, tissue, and organ level has seen continuous improvements over traditional techniques. As the core of tissue repair, seed cells are widely used in various fields of regenerative medicine. However, their use is still associated with problems such as decreased cell survival and regeneration capacity after transplantation, immune rejection, and ethical concerns. Therefore, it is difficult to universally and safely apply stem cell banks for regenerative medicine. The paracrine effects of cells, especially secretion of exosomes, play vital roles in cell communication, immune response, angiogenesis, scar formation, tissue repair, and other biological functions. Exosomes are a type of nanoscale extracellular vesicle that contain biologically active molecules such as RNA and proteins; therefore, exosomes can replicate the functions of their parental cells. Meanwhile, exosomes can be used as nanocarriers to deliver active factors or small molecules to promote tissue repair. Preclinical studies of exosomes in tissue engineering and regenerative medicine have been carried in the fields of bone/cartilage repair, nerve regeneration, liver and kidney regeneration, skin repair, vascular tissue regeneration, etc. This review introduces exosomes from the aspects of biogenesis, composition, identification, and isolation, and focuses on the development status of scaffold materials for exosome delivery. In addition, we highlight examples of exosome-laden scaffolds for preclinical applications in tissue repair. We look forward to the broad application prospects of exosome-laden scaffolds.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Rim , Regeneração , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais
17.
Orthop J Sports Med ; 9(2): 2325967120958487, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33614806

RESUMO

BACKGROUND: Graft impingement is one of the main concerns in double-bundle anterior cruciate ligament reconstruction (DB-ACLR). Impingement between the anteromedial (AM) and posterolateral (PL) bundles has been postulated to cause graft deterioration or rerupture, but this has not been thoroughly investigated, and the interbundle impingement pressure (IIP) has not been well researched. PURPOSE: To determine the IIP between the AM and PL bundles in the native anterior cruciate ligament (ACL) and in DB-ACLR with individualized and nonindividualized double-tunnel placement. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 30 fresh-frozen, nonpaired, human cadaveric knees were randomly divided into 3 groups of 10 knees: native intact ACL (NI group), DB-ACLR tunnel placement using the preserved remnant procedure (individualized reconstruction) (PR group), and DB-ACLR tunnel placement using the bony landmark procedure (nonindividualized reconstruction) (BL group). Pressure sensors were inserted between the AM and PL bundles. The knee was moved passively from full extension to full flexion, and the IIP between the 2 ACL bundles was measured every 15°. Similarly, the impingement pressure was measured between the ACL and intercondylar roof and between the ACL and posterior cruciate ligament (PCL). RESULTS: No significant differences were found in the maximum, mean, or minimum ACL-roof and ACL-PCL impingement pressures among the 3 groups. The IIP significantly increased when the knee joint was flexed >120° in all 3 groups (P < .001). Compared with the other 2 groups, the BL group had significantly higher maximum and mean IIP throughout the range of knee movement (P < .001) and from maximum extension to 120° of flexion (P < .001). The BL group also had significantly higher minimum IIP than the other 2 groups when knee flexion was >120° (P < .001). No significant differences were seen in maximum, minimum, or mean IIP between the NI and PR groups. CONCLUSION: The PR procedure (individualized DB-ACLR) was more consistent with the interbundle biomechanical conditions of the native ACL, whereas the BL procedure (nonindividualized DB-ACLR) had higher maximum and mean IIP. The IIP was higher than the ACL-intercondylar roof or ACL-PCL pressures, and it increased significantly when knee flexion was >120°. CLINICAL RELEVANCE: These data suggest that surgeons can perform individualized DB-ACLR using preserved remnants for tunnel placement as impingement-free DB-ACLR.

18.
Biomater Sci ; 9(7): 2620-2630, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595025

RESUMO

Acute injury of the articular cartilage can lead to chronic disabling conditions because of the limited self-repair capability of the cartilage. Implantation of stem cells at the injury site is a viable treatment, but requires a scaffold with a precisely controlled geometry and porosity in the 3D space, high biocompatibility, and the capability of promoting chondrogenic differentiation of the implanted stem cells. Here we report the development of gelatin/hydroxyapatite (HAP) hybrid materials by microextrusion 3D bioprinting and enzymatic cross-linking as the scaffold for human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). The scaffold supports the adhesion, growth, and proliferation of hUCB-MSCs and induces their chondrogenic differentiation in vitro. Doping HAP in the gelatin scaffold increases the fluidity of the hydrogel, improves the gelation kinetics and the rheological properties, and allows better control over 3D printing. Implanting the hUCB-MSC-laden scaffold at the injury site of the articular cartilage effectively repairs the cartilage defects in a pig model. Altogether, this work demonstrates the 3D printing of gelatin-based scaffold materials for hUCB-MSCs to repair cartilage defects as a potential treatment of articular cartilage injury.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Condrogênese , Durapatita , Gelatina , Impressão Tridimensional , Células-Tronco , Suínos , Engenharia Tecidual , Alicerces Teciduais
19.
Cancer Sci ; 112(4): 1481-1494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33523522

RESUMO

In this study, a new mathematical model was established and validated to forecast and define sensitive targets in the kynurenine pathway (Kynp) in pancreatic adenocarcinoma (PDAC). Using the Panc-1 cell line, genetic profiles of Kynp molecules were tested. qPCR data were implemented in the algorithm programming (fmincon and lsqnonlin function) to estimate 35 parameters of Kynp variables by Matlab 2017b. All tested parameters were defined as non-negative and bounded. Then, based on experimental data, the function of the fmincon equation was employed to estimate the approximate range of each parameter. These calculations were confirmed by qPCR and Western blot. The correlation coefficient (R) between model simulation and experimental data (72 hours, in intervals of 6 hours) of every variable was >0.988. The analysis of reliability and predictive accuracy depending on qPCR and Western blot data showed high predictive accuracy of the model; R was >0.988. Using the model calculations, kynurenine (x3, a6), GPR35 (x4, a8), NF-kßp105 (x7, a16), and NF-kßp65 (x8, a18) were recognized as sensitive targets in the Kynp. These predicted targets were confirmed by testing gene and protein expression responses. Therefore, this study provides new interdisciplinary evidence for Kynp-sensitive targets in the treatment of PDAC.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Cinurenina/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética , Linhagem Celular Tumoral , Humanos , Modelos Teóricos , Reprodutibilidade dos Testes , Neoplasias Pancreáticas
20.
Exp Ther Med ; 21(1): 71, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33365071

RESUMO

The purpose of the present study was to investigate the expression profile of leucine-rich repeat-containing protein 8A (LRRC8A) in osteosarcoma and normal cortical bone, as well as its association with sex, age and tumor malignancy. Immunohistochemical staining of osteosarcoma tissue microarrays (TMAs) was performed to determine the protein expression of LRRC8A and compare them among different subgroups. The expression of LRRC8A in the nuclei and cytoplasm of U2OS tumor cells and MC3T3-E1 osteoblast-like cells was determined using reverse transcription-quantitative PCR. Of all samples of the TMA for patients with osteosarcoma that were tested, 94% featured high cytoplasmic expression of LRRC8A, while in all normal bone tissue control groups, the gene was mainly expressed in the nucleus. In MC3T3-E1 osteoblasts, the expression of LRRC8A at the RNA level was mainly in the cytoplasm. The difference in expression of LRRC8A between microarrays and osteoblasts was statistically significant. In U2OS osteosarcoma cells, LRRC8A mRNA was concentrated in the nuclei and cytoplasm. In osteosarcoma, the expression level of LRRC8A was not significantly associated with sex or age. In conclusion, LRRC8A was highly expressed in the cytoplasm of osteosarcoma cells and the degree of expression may be associated with the degree of tumor malignancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...