Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 3, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161207

RESUMO

Conjugated polymers are promising material candidates for many future applications in flexible displays, organic circuits, and sensors. Their performance is strongly affected by their structural conformation including both electrical and optical anisotropy. Particularly for thin layers or close to crucial interfaces, there are few methods to track their organization and functional behaviors. Here we present a platform based on plasmonic nanogaps that can assess the chemical structure and orientation of conjugated polymers down to sub-10 nm thickness using light. We focus on a representative conjugated polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), of varying thickness (2-20 nm) while it undergoes redox in situ. This allows dynamic switching of the plasmonic gap spacer through a metal-insulator transition. Both dark-field (DF) and surface-enhanced Raman scattering (SERS) spectra track the optical anisotropy and orientation of polymer chains close to a metallic interface. Moreover, we demonstrate how this influences both optical and redox switching for nanothick PEDOT devices.

2.
Adv Mater ; 35(31): e2302028, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277121

RESUMO

Dynamically tunable reflective structural colors are attractive for reflective displays (electronic paper). However, it is challenging to tune a thin layer of structural color across the full red-green-blue (RGB) basis set of colors at video rates and with long-term stability. In this work, this is achieved through a hybrid cavity built from metal-insulator-metal (MIM) "nanocaves" and an electrochromic polymer (PProDOTMe2 ). The reflective colors are modulated by electrochemically doping/dedoping the polymer. Compared with traditional subpixel-based systems, this hybrid structure provides high reflectivity (>40%) due to its "monopixel" nature and switches at video rates. The polymer bistability helps deliver ultralow power consumption (≈2.5 mW cm-2 ) for video display applications and negligible consumption (≈3 µW cm-2 ) for static images, compatible with fully photovoltaic powering. In addition, the color uniformity of the hybrid material is excellent (over cm-2 ) and the scalable fabrication enables large-area production.

3.
Angew Chem Int Ed Engl ; 61(22): e202115745, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35289480

RESUMO

Interfaces functionalized with polymers are known for providing excellent resistance towards biomolecular adsorption and for their ability to bind high amounts of protein while preserving their structure. However, making an interface that switches between these two states has proven challenging and concepts to date rely on changes in the physiochemical environment, which is static in biological systems. Here we present the first interface that can be electrically switched between a high-capacity (>1 µg cm-2 ) multilayer protein binding state and a completely non-fouling state (no detectable adsorption). Switching is possible over multiple cycles without any regeneration. Importantly, switching works even when the interface is in direct contact with biological fluids and a buffered environment. The technology offers many applications such as zero fouling on demand, patterning or separation of proteins as well as controlled release of biologics in a physiological environment, showing high potential for future drug delivery in vivo.


Assuntos
Polímeros , Proteínas , Adsorção , Polímeros/química , Ligação Proteica , Proteínas/química
4.
Adv Mater ; 33(41): e2103217, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34448507

RESUMO

Reflective displays or "electronic paper" technologies provide a solution to the high energy consumption of emissive displays by simply utilizing ambient light. However, it has proven challenging to develop electronic paper with competitive image quality and video speed capabilities. Here, the first technology that provides video speed switching of structural colors with high contrast over the whole visible is shown. Importantly, this is achieved with a broadband-absorbing polarization-insensitive electrochromic polymer instead of liquid crystals, which makes it possible to maintain high reflectivity. It is shown that promoting electrophoretic ion transport (drift motion) improves the switch speed. In combination with new nanostructures that have high surface curvature, this enables video speed switching (20 ms) at high contrast (50% reflectivity change). A detailed analysis of the optical signal during switching shows that the polaron formation starts to obey first order reaction kinetics in the video speed regime. Additionally, the system still operates at ultralow power consumption during video speed switching (<1 mW cm-2 ) and has negligible power consumption (<1 µW cm-2 ) in bistability mode. Finally, the fast switching increases device lifetime to at least 107 cycles, an order of magnitude more than state-of-the-art.

5.
Front Chem ; 7: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778383

RESUMO

Biosensors based on plasmonic nanostructures are widely used in various applications and benefit from numerous operational advantages. One type of application where nanostructured sensors provide unique value in comparison with, for instance, conventional surface plasmon resonance, is investigations of the influence of nanoscale geometry on biomolecular binding events. In this study, we show that plasmonic "nanowells" conformally coated with a continuous lipid bilayer can be used to detect the preferential binding of the insulin receptor tyrosine kinase substrate protein (IRSp53) I-BAR domain to regions of negative surface curvature, i.e., the interior of the nanowells. Two different sensor architectures with and without an additional niobium oxide layer are compared for this purpose. In both cases, curvature preferential binding of IRSp53 (at around 0.025 nm-1 and higher) can be detected qualitatively. The high refractive index niobium oxide influences the near field distribution and makes the signature for bilayer formation less clear, but the contrast for accumulation at regions of negative curvature is slightly higher. This work shows the first example of analyzing preferential binding of an average-sized and biologically important protein to negative membrane curvature in a label-free manner and in real-time, illustrating a unique application for nanoplasmonic sensors.

6.
Rep Prog Phys ; 82(2): 024501, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30640724

RESUMO

In recent years there has been a growing interest in the use of plasmonic nanostructures for color generation, a technology that dates back to ancient times. Plasmonic structural colors have several attractive features but once the structures are prepared the colors are normally fixed. Lately, several concepts have emerged for actively tuning the colors, which opens up for many new potential applications, the most obvious being novel color displays. In this review we summarize recent progress in active control of plasmonic colors and evaluate them with respect to performance criteria for color displays. It is suggested that actively controlled plasmonic colors are generally less interesting for emissive displays but could be useful for new types of electrochromic devices relying on ambient light (electronic paper). Furthermore, there are several other potential applications such as images to be revealed on demand and colorimetric sensors.

7.
Nanoscale Adv ; 1(11): 4282-4289, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134417

RESUMO

Solid state nanopores are central structures for many applications. To date, much effort has been spent on controlled fabrication of single nanopores, while relatively little work has focused on large scale fabrication of arrays of nanopores. In this work we show wafer-scale fabrication of plasmonic nanopores in 50 nm thick silicon nitride membranes with one or two 30 nm gold films, using electron beam lithography with a negative resist or a new version of colloidal lithography. Both approaches offer good control of pore diameter (even below 100 nm) and with high yield (>90%) of intact membranes. Colloidal lithography has the advantage of parallel patterning without expensive equipment. Despite its serial nature, electron beam lithography provides high throughput and can make arbitrary array patterns. Importantly, both methods prevent metal from ending up on the membrane pore sidewalls. The new fabrication methods make it possible to compare the optical properties of structurally identical plasmonic nanopore arrays with either long-range order (e-beam) or short-range order (colloidal). The resonance features in the extinction spectrum are very similar for both structures when the pitch is the same as the characteristic spacing in the self-assembled colloidal pattern. Long-range ordering slightly enhances the magnitude of the extinction maximum and blueshift the transmission maximum by tens of nm. Upon reducing the diameter in long-range ordered arrays, the resonance is reduced in magnitude and the transmission maximum is further blue shifted, just like for short-range ordered arrays. These effects are well explained by interpreting the spectra as Fano interference between the grating-type excitation of propagating surface plasmons and the broad transmission via individual pores in the metal film. Furthermore, we find that only the short-range ordered arrays scatter light, which we attribute to the highly limited effective period in the short-range ordered system and the corresponding lack of coherent suppression of scattering by interference effects.

8.
ACS Cent Sci ; 4(8): 1007-1014, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30159397

RESUMO

Control of molecular translocation through nanoscale apertures is of great interest for DNA sequencing, biomolecular filters, and new platforms for single molecule analysis. However, methods for controlling the permeability of nanopores are very limited. Here, we show how nanopores functionalized with poly(ethylene glycol) brushes, which fully prevent protein translocation, can be reversibly gated to an "open" state by binding of single IgG antibodies that disrupt the macromolecular barrier. On the basis of surface plasmon resonance data we propose a two-state model describing the antibody-polymer interaction kinetics. Reversibly (weakly) bound antibodies decrease the protein exclusion height while irreversibly (strongly) bound antibodies do not. Our results are further supported by fluorescence readout from pore arrays and high-speed atomic force microscopy on single pores. This type of dynamic barrier control on the nanoscale provides new possibilities for biomolecular separation and analysis.

9.
Anal Chem ; 90(12): 7458-7466, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29806449

RESUMO

Nanoplasmonic sensors have emerged as a promising measurement approach to track biomacromolecular interactions involving lipid membrane interfaces. By taking advantage of nanoscale fabrication capabilities, it is possible to design sensing platforms with various architectural configurations. Such capabilities open the door to fabricating lipid membrane-coated nanoplasmonic sensors with varying degrees of membrane curvature in order to understand how biomacromolecular interaction processes are influenced by membrane curvature. Herein, we employed an indirect nanoplasmonic sensing approach to characterize the fabrication of supported lipid bilayers (SLBs) on silica-coated nanowell and nanodisk sensing platforms and to investigate how membrane curvature influences membrane-peptide interactions by evaluating the corresponding measurement responses from different spectral signatures that are sensitive to specific regions of the sensor geometries. SLBs were prepared by the vesicle fusion method, as monitored in real-time by nanoplasmonic sensing measurements and further characterized by fluorescence recovery after photobleaching (FRAP) experiments. By resolving different spectral signatures in the nanoplasmonic sensing measurements, it was determined that peptide binding induces membrane disruption at positively curved membrane regions, while peptide binding without subsequent disruption was observed at planar and negatively curved regions. These findings are consistent with the peptide's known preference to selectively form pores in positively curved membranes, providing validation to the nanoplasmonic sensing approach and highlighting how the integration of nanoplasmonic sensors with different nanoscale architectures can be utilized to study the influence of membrane curvature on biomacromolecular interaction processes.


Assuntos
Estruturas da Membrana Celular/metabolismo , Substâncias Macromoleculares/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Membrana Celular/ultraestrutura , Recuperação de Fluorescência Após Fotodegradação , Bicamadas Lipídicas/metabolismo , Nanotecnologia/métodos , Peptídeos/metabolismo , Propriedades de Superfície
10.
Nanoscale ; 10(10): 4663-4669, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29468241

RESUMO

Polymer brushes are widely used to prevent the adsorption of proteins, but the mechanisms by which they operate have remained heavily debated for many decades. We show conclusive evidence that a polymer brush can be a remarkably strong kinetic barrier towards proteins by using poly(ethylene glycol) grafted to the sidewalls of pores in 30 nm thin gold films. Despite consisting of about 90% water, the free coils seal apertures up to 100 nm entirely with respect to serum protein translocation, as monitored label-free through the plasmonic activity of the nanopores. The conclusions are further supported by atomic force microscopy and fluorescence microscopy. A theoretical model indicates that the brush undergoes a morphology transition to a sealing state when the ratio between the extension and the radius of curvature is approximately 0.8. The brush-sealed pores represent a new type of ultrathin filter with potential applications in bioanalytical systems.


Assuntos
Nanoporos , Polietilenoglicóis/química , Polímeros/química , Proteínas/química , Adsorção , Ouro , Microscopia de Força Atômica , Microscopia de Fluorescência
11.
Front Chem ; 6: 637, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619840

RESUMO

Biosensors based on plasmonic nanostructures offer label-free and real-time monitoring of biomolecular interactions. However, so do many other surface sensitive techniques with equal or better resolution in terms of surface coverage. Yet, plasmonic nanostructures offer unique possibilities to study effects associated with nanoscale geometry. In this work we use plasmonic nanopores with double gold films and detect binding of proteins inside them. By thiol and trietoxysilane chemistry, receptors are selectively positioned on the silicon nitride interior walls. Larger (~150 nm) nanopores are used detect binding of averaged sized proteins (~60 kg/mol) with high signal to noise (>100). Further, we fabricate pores that approach the size of the nuclear pore complex (diameter down to 50 nm) and graft disordered phenylalanine-glycine nucleoporin domains to the walls, followed by titration of karyopherinß1 transport receptors. The interactions are shown to occur with similar affinity as determined by conventional surface plasmon resonance on planar surfaces. Our work illustrates another unique application of plasmonic nanostructures, namely the possibility to mimic the geometry of a biological nanomachine with integrated optical sensing capabilities.

12.
Nano Lett ; 17(11): 7033-7039, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29028347

RESUMO

Plasmonic color generation offers several advantages but is also limited by the cost and availability of noble metals like gold. In this work, we present color-tunable metasurfaces with high chromaticity and reflectivity consisting of an aluminum mirror, a dielectric spacer, and a plasmonic nanohole array in copper. Copper is shown to be an excellent alternative to gold when properly protected from oxidation and makes it possible to generate a wide RGB gamut covering 27% of the standard RGB. By patterning the metasurfaces into microscale pixel triplets, color photos can be well reproduced with high resolution over wafer-sized areas. Further, we demonstrate active modulation of the reflected intensity using an electrochromic conductive polymer deposited on top of the nanostructures by screen printing. This technology opens up for ultrathin and flexible reflective displays in full color, that is, plasmonic electronic paper, compatible with large-scale sustainable production.

13.
Sensors (Basel) ; 17(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632153

RESUMO

Plasmonic nanostructures are widely used for various sensing applications by monitoring changes in refractive index through optical spectroscopy or as substrates for surface enhanced Raman spectroscopy. However, in most practical situations conventional surface plasmon resonance is preferred for biomolecular interaction analysis because of its high resolution in surface coverage and the simple single-material planar interface. Still, plasmonic nanostructures may find unique sensing applications, for instance when the nanoscale geometry itself is of interest. This calls for new methods to prepare nanoscale particles and cavities with controllable dimensions and curvature. In this work, we present two types of plasmonic nanopores where the solid support underneath a nanohole array has been etched, thereby creating cavities denoted as 'nanowells' or 'nanocaves' depending on the degree of anisotropy (dry or wet etch). The refractometric sensitivity is shown to be enhanced upon removing the solid support because of an increased probing volume and a shift of the asymmetric plasmonic field towards the liquid side of the finite gold film. Furthermore, the structures exhibit different spectral changes upon binding inside the cavities compared to the gold surface, which means that the structures can be used for location-specific detection. Other sensing applications are also suggested.

14.
Adv Mater ; 28(45): 9956-9960, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27670834

RESUMO

A flexible electronic paper in full color is realized by plasmonic metasurfaces with conjugated polymers. An ultrathin large-area electrochromic material is presented which provides high polarization-independent reflection, strong contrast, fast response time, and long-term stability. This technology opens up for new electronic readers and posters with ultralow power consumption.

15.
Analyst ; 141(12): 3803-10, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26867475

RESUMO

Plasmonic nanohole arrays are widely used for optical label-free molecular detection. An important factor for many applications is the diameter of the apertures. So far nanohole arrays with controllable diameters below 100 nm have not been demonstrated and it has not been systematically investigated how the diameter influences the optical properties. In this work we fine-tune the diameter in short range ordered nanohole arrays down to 50 nm. The experimental far field spectra show how the wavelength of maximum extinction remains unaffected while the transmission maximum blue shifts with smaller diameters. The near field is visualized by numerical simulations, showing a homogenous enhancement throughout the cylindrical void at the transmission maximum for diameters between 50 and 100 nm. For diameters below 50 nm plasmon excitation is no longer possible experimentally or by simulations. Further, we investigate the refractive index sensing capabilities of the smaller holes. As the diameter was reduced, the sensitivity in terms of resonance shift with bulk liquid refractive index was found to be unaltered. However, for the transmission maximum the sensitivity becomes more strongly localized to the hole interior. By directing molecular binding to the bottom of the holes we demonstrate how smaller holes enhance the sensitivity in terms of signal per molecule. A real-time detection limit well below one protein per nanohole is demonstrated. The smaller plasmonic nanoholes should be suitable for studies of molecules confined in small volumes and as mimics of biological nanopores.


Assuntos
Técnicas Biossensoriais , Nanoporos , Ressonância de Plasmônio de Superfície , Limite de Detecção , Refratometria
16.
Nanoscale ; 7(37): 15080-5, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26351000

RESUMO

The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic "nanowells" provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids.


Assuntos
Técnicas Biossensoriais/métodos , Bicamadas Lipídicas/química , Nanoestruturas/química , Nanotecnologia/métodos , Dióxido de Silício/química
17.
Nano Lett ; 15(6): 4059-65, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25938263

RESUMO

Emission of photoexcited hot electrons from plasmonic metal nanostructures to semiconductors is key to a number of proposed nanophotonics technologies for solar harvesting, water splitting, photocatalysis, and a variety of optical sensing and photodetector applications. Favorable materials and catalytic properties make systems based on gold and TiO2 particularly interesting, but the internal photoemission efficiency for visible light is low because of the wide bandgap of the semiconductor. We investigated the incident photon-to-electron conversion efficiency of thin TiO2 films decorated with Au nanodisk antennas in an electrochemical circuit and found that incorporation of a Au mirror beneath the semiconductor amplified the photoresponse for light with wavelength λ = 500-950 nm by a factor 2-10 compared to identical structures lacking the mirror component. Classical electrodynamics simulations showed that the enhancement effect is caused by a favorable interplay between localized surface plasmon excitations and cavity modes that together amplify the light absorption in the Au/TiO2 interface. The experimentally determined internal quantum efficiency for hot electron transfer decreases monotonically with wavelength, similar to the probability for interband excitations with energy higher than the Schottky barrier obtained from a density functional theory band structure simulation of a thin Au/TiO2 slab.

18.
Nano Lett ; 14(6): 3544-9, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24807397

RESUMO

We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...