Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(11): 2541-2558, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392090

RESUMO

Although itch and pain have many similarities, they are completely different in perceptual experience and behavioral response. In recent years, we have a deep understanding of the neural pathways of itch sensation transmission. However, there are few reports on the role of non-neuronal cells in itch. Microglia are known to play a key role in chronic neuropathic pain and acute inflammatory pain. It is still unknown whether microglia are also involved in regulating the transmission of itch sensation. In the present study, we used several kinds of transgenic mice to specifically deplete CX3CR1+ microglia and peripheral macrophages together (whole depletion), or selectively deplete microglia alone (central depletion). We observed that the acute itch responses to histamine, compound 48/80 and chloroquine were all significantly reduced in mice with either whole or central depletion. Spinal c-fos mRNA assay and further studies revealed that histamine and compound 48/80, but not chloroquine elicited primary itch signal transmission from DRG to spinal Npr1- and somatostatin-positive neurons relied on microglial CX3CL1-CX3CR1 pathway. Our results suggested that microglia were involved in multiple types of acute chemical itch transmission, while the underlying mechanisms for histamine-dependent and non-dependent itch transmission were different that the former required the CX3CL1-CX3CR1 signal pathway.


Assuntos
Histamina , Microglia , Camundongos , Animais , Histamina/metabolismo , Microglia/metabolismo , Prurido/induzido quimicamente , Prurido/metabolismo , Camundongos Transgênicos , Cloroquina/farmacologia , Transdução de Sinais , Dor
2.
Proc Natl Acad Sci U S A ; 114(5): 1177-1182, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096412

RESUMO

Neurotransmission in dentate gyrus (DG) is critical for spatial coding, learning memory, and emotion processing. Although DG dysfunction is implicated in psychiatric disorders, including schizophrenia, underlying pathological mechanisms remain unclear. Here we report that transmembrane protein 108 (Tmem108), a novel schizophrenia susceptibility gene, is highly enriched in DG granule neurons and its expression increased at the postnatal period critical for DG development. Tmem108 is specifically expressed in the nervous system and enriched in the postsynaptic density fraction. Tmem108-deficient neurons form fewer and smaller spines, suggesting that Tmem108 is required for spine formation and maturation. In agreement, excitatory postsynaptic currents of DG granule neurons were decreased in Tmem108 mutant mice, indicating a hypofunction of glutamatergic activity. Further cell biological studies indicate that Tmem108 is necessary for surface expression of AMPA receptors. Tmem108-deficient mice display compromised sensorimotor gating and cognitive function. Together, these observations indicate that Tmem108 plays a critical role in regulating spine development and excitatory transmission in DG granule neurons. When Tmem108 is mutated, mice displayed excitatory/inhibitory imbalance and behavioral deficits relevant to schizophrenia, revealing potential pathophysiological mechanisms of schizophrenia.


Assuntos
Transtornos Cognitivos/genética , Giro Denteado/fisiologia , Filtro Sensorial/genética , Proteínas de Transporte Vesicular/fisiologia , Animais , Animais Recém-Nascidos , Transtornos Cognitivos/fisiopatologia , Giro Denteado/metabolismo , Modelos Animais de Doenças , Eletroporação , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo , Genes Reporter , Ácido Glutâmico/fisiologia , Células HEK293 , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Neurônios/ultraestrutura , Densidade Pós-Sináptica/química , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de AMPA/biossíntese , Esquizofrenia/genética , Filtro Sensorial/fisiologia , Transmissão Sináptica/fisiologia , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...