Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 364-372, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38768549

RESUMO

Improving the conductivity of the electrocatalyst itself is essential for enhancing its performance. In this work, N, S-rich 6-thioguanine (TG) is selected as the ligand to synthesize a Fe, Ni bimetallic porous coordination polymer (PCP), which is then derived to fabricate N,S codoped carbon (NSC)-coated (Fe,Ni)9S8/Ni3S2 bridged nanowires. The (Fe,Ni)9S8/Ni3S2@NSC bridged nanowires obtained through bimetallic synergistic catalysis and self-sulfurization processes not only introduced additional electrocatalytic active sites but also significantly enhance the overall conductivity of the catalyst due to the interconnected nanowire structure. The resulting (Fe,Ni)9S8/Ni3S2@NSC demonstrates remarkable oxygen evolution reaction (OER) performance, exhibiting an overpotential as low as 252 mV at a current density of 10 mA cm-2. This work proposes a novel strategy for enhancing the overall conductivity of catalysts by growing bridged nanowires, providing valuable insights and inspiration for the design and preparation of advanced transition metal sulfide electrocatalysts.

2.
Biochem Genet ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627316

RESUMO

In the present study, our aim was to explore the role of MUC4 in IL-4-stimulated conjunctival epithelial cells and the underlying mechanisms. Human recombinant IL-4 was employed in human conjunctival epithelial cells (HConEpic) cells, and MUC4 shRNA (sh-MUC4) was constructed to explore the functional role of MUC4. The protein level of MUC4, O-GlcNAc transferase (OGT), O-GlcNAc hydrolase (OGA), zonula occludens 1 (ZO-1), gap junction protein beta 2 (GJB2), claudin-8 (CLDN8), and E-cadherin were detected by Western blot in HConEpic cells, the interaction between MUC4 and OGT/OGA was assessed by co-immunoprecipitation (IP) and Western blot in 293T cells. Our results showed that IL-4 significantly up-regulated MUC4 and OGT protein levels in HConEpic cells, while down-regulated OGA protein level. Also, IL-4 down-regulated ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, while which was markedly reversed by sh-MUC4. Additionally, OGT inhibitor significantly reduced MUC4 protein level, and elevated ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, while OGA inhibitor resulted in the opposite results. Furthermore, in addition to the interaction between OGT/OGA and MUC4, Co-IP and Western blot also revealed the alteration of MUC4 O-GlcNAcylation in 293T cells treated with OGT/OGA inhibitor. Above findings suggested that OGT/OGA inhibitor regulated MUC4 protein level by affecting MUC4 O-GlcNAcylation to regulate ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, which was achieved via inhibiting the interaction between OGT/OGA and MUC4. This study may provide a better understanding of the pathogenesis of allergic conjunctivitis (AC).

3.
Chem Sci ; 15(5): 1829-1839, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303939

RESUMO

Developing a comprehensive strategy for imaging various biomarkers (i.e., microRNAs and proteases) in vivo is an exceptionally formidable task. Herein, we have designed a deoxyribonucleic acid-gold nanocluster (DNA-AuNC) nanomachine for detecting tumor-related TK1 mRNA and cathepsin B in living cells and in vivo. The DNA-AuNC nanomachine is constructed using AuNCs and DNA modules that incorporate a three component DNA hybrid (TD) and a single-stranded fuel DNA (FD). Upon being internalized into tumor cells, the TK1 mRNA initiates the DNA-AuNC nanomachine through DNA strand displacement cascades, leading to the amplified self-assembly and the aggregation-enhanced emission of AuNCs for in situ imaging. Furthermore, with the aid of a protease nanomediator consisting of a mediator DNA/peptide complex and AuNCs (DpAuNCs), the DNA-AuNC nanomachine can be triggered by the protease-activated disassembly of the DNA/peptide complex on the nanomediator, resulting in the aggregation of AuNCs for in vivo protease amplified detection. It is worth noting that our study demonstrates the impressive tumor permeability and accumulation capabilities of the DNA-AuNC nanomachines via in situ amplified self-assembly, thereby facilitating prolonged imaging of TK1 mRNA and cathepsin B both in vitro and in vivo. This strategy presents a versatile and biomarker-specific paradigm for disease diagnosis.

4.
Anal Chem ; 95(47): 17392-17399, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961783

RESUMO

Combining targeting ability, imaging function, and photothermal/photodynamic therapy into a single agent is highly desired for cancer theranostics. Herein, we developed a one-for-all nanoplatform with N/P/S-codoped fluorescent carbon nanodots (CNDs) for tumor-specific phototheranostics. The CNDs were prepared via a one-pot hydrothermal process using cancer cells as sources of carbon, nitrogen, phosphorus, and sulfur. The obtained N/P/S-codoped CNDs exhibit wide light absorption in the range of 200-900 nm and excitation-dependent emission with high photostability. Importantly, the cancer cell-derived N/P/S-codoped CNDs have outstanding biocompatibility and naturally intrinsic targeted ability for cancer cells as well as dual photothermal/photodynamic effects under 795 nm laser irradiation. Moreover, the photothermal conversion efficiency and singlet oxygen (1O2) generation efficiency were calculated to be 52 and 34%, respectively. These exceptional properties enable CNDs to act as fine theranostic agents for targeted imaging and photothermal-photodynamic synergistic therapy within the NIR therapeutic window. The CNDs prepared in this work are promising for construction as a universal tumor phototheranostic platform.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Carbono/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Medicina de Precisão , Corantes , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral
5.
J Neurosci ; 43(48): 8231-8242, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37751999

RESUMO

Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.


Assuntos
Dopamina , Miopia , Masculino , Camundongos , Animais , Dopamina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Camundongos Endogâmicos C57BL , Miopia/genética , Miopia/metabolismo , Retina/metabolismo , Receptores de Dopamina D1/metabolismo
6.
Adv Healthc Mater ; 12(31): e2302016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713653

RESUMO

Multimodal cancer therapies show great promise in synergistically enhancing anticancer efficacy through different mechanisms. However, most current multimodal therapies either rely on complex assemblies of multiple functional nanomaterials and drug molecules or involve the use of nanomedicines with poor in vivo degradability/metabolizability, thus restricting their clinical translatability. Herein, a nanoflower-medicine using iron ions, thioguanine (TG), and tetracarboxylic porphyrin (TCPP) are synthesized as building blocks through a one-step hydrothermal method for combined chemo/chemodynamic/photodynamic cancer therapy. The resulting nanoflowers, consisting of low-density Fe2 O3 core and iron complex (Fe-TG and Fe-TCPP compounds) shell, exhibit high accumulation at the tumor site, desirable degradability in the tumor microenvironment (TME), robust suppression of tumor growth and metastasis, as well as effective reinvigoration of host antitumor immunity. Triggered by the low pH in tumor microenvironment, the nanoflowers gradually degrade after internalization, contributing to the effective drug release and initiation of high-efficiency catalytic reactions precisely in tumor sites. Moreover, iron ions can be eliminated from the body through renal clearance after fulfilling their mission. Strikingly, it is also found that the multimodal synergistic therapy effectively elicits the host antitumor immunity without inducing additional toxicity. This easy-manufactured and degradable multimodal therapeutic nanomedicine is promising for clinical precision oncology.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Microambiente Tumoral , Medicina de Precisão , Íons/uso terapêutico , Ferro , Linhagem Celular Tumoral
7.
Biomaterials ; 301: 122263, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549506

RESUMO

The in-situ generation of therapeutic agents in targeted lesions is promising for revolutionizing oncotherapy but is limited by the low production efficiency. Given the specific tumor microenvironment (TME) of colorectal cancer (CRC), i.e., mild acidity, overexpressed H2O2, glutathione (GSH) and H2S, we develop phycocyanin (PC) encapsulated PZTC/SS/HA nanocapsules (NCs) for TME-responsive, protein-assisted "turn-on'' therapy of CRC. The NCs are prepared by sequentially assembling Cu2+-tannic acid (TA) coordination shell, disulfide bond-bearing cross-linker, and hyaluronic acid (HA) on the sacrificial template ZIF-8, thus achieving pH-, GSH-responsiveness, and tumor targeting capability, respectively. Once reaching the CRC sites, the NCs can quickly disintegrate and release Cu2+ and PC, accompanied by subsequent endogenous H2S-triggered generation of copper sulfide (CuS). Significantly, the intracellular sulfidation process can be accelerated by PC, thereby enabling efficient photothermal therapy (PTT) under NIR-Ⅱ laser. Besides, Cu2+-associated chemodynamic therapy (CDT) can be simultaneously activated and enhanced by PTT-induced local hyperthermia and disulfide bond-induced GSH consumption. This CRC-targeted and TME-activated synergistic PTT/CDT strategy displays high therapeutic efficacy both in vitro and in vivo, which can open up a new avenue for biomolecule-assisted in-situ nanoagent generation and effective TME-responsive synergistic treatment of CRC.


Assuntos
Neoplasias Colorretais , Nanocápsulas , Nanopartículas , Neoplasias , Humanos , Ficocianina/uso terapêutico , Cobre , Peróxido de Hidrogênio , Microambiente Tumoral , Glutationa , Ácido Hialurônico , Neoplasias Colorretais/tratamento farmacológico , Dissulfetos , Linhagem Celular Tumoral
8.
Chemistry ; 29(31): e202300348, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36918359

RESUMO

Herein, the electronic structure and bonding character of the stable cyclo[18]carbon (C18 ) precursor, C18 Br6 , are thoroughly characterized by molecular orbital (MO), density of states (DOS), bond order (BO), and interaction region indicator (IRI) analyses. The delocalization characters of out-of-plane and in-plane π-electrons (labeled as πout - and πin -electrons, respectively) in bonding regions were examined using localized orbital locator (LOL) and electron localization function (ELF). The aromaticity was investigated, studying the molecular magnetic response to external magnetic field by computing the magnetically induced current density (Jind ), iso-chemical shielding surface (ICSS), anisotropy of the induced current density (AICD), and the induced magnetic field (Bind ). All these analyses indicate that C18 Br6 is a globally aromatic species with lower aromaticity than C18 , and the blocking of in-plane π-conjugation (labeled as πin -conjugation) by the presence of -Br substituents in it is the underlying cause for the weakening of molecular aromaticity.

9.
Molecules ; 28(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36770767

RESUMO

Electrochemical hydrogen evolution is a highly efficient way to produce hydrogen, but since it is limited by high-cost electrocatalysts, the preparation of high-efficiency electrocatalysts with fewer or free noble metals is important. Here, Ta3N5 nanobelt (NB)-loaded Ru nanoparticle (NP) hybrids with various ratios, including 1~10 wt% Ru/Ta3N5, are constructed to electrocatalyze water splitting for a hydrogen evolution reaction (HER) in alkaline media. The results show that 5 wt% Ru/Ta3N5 NBs have good HER properties with an overpotential of 64.6 mV, a Tafel slope of 84.92 mV/dec at 10 mA/cm2 in 1 M of KOH solution, and good stability. The overpotential of the HER is lower than that of Pt/C (20 wt%) at current densities of 26.3 mA/cm2 or more. The morphologies and structures of the materials are characterized by scanning electron microscopy and high-resolution transmission electron microscopy, respectively. X-ray photoelectron energy spectroscopy (XPS) demonstrates that a good HER performance is generated by the synergistic effect and electronic transfer of Ru to Ta3N5. Our electrochemical analyses and theoretical calculations indicate that Ru/Ta3N5 interfaces play an important role as real active sites.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36317753

RESUMO

Carbon-coated metal chalcogenide composites have been demonstrated as one type of promising anode material for sodium-ion batteries (SIBs). However, combining carbon materials with micronanoparticles of metal chalcogenide always involve complicated processes, such as polymer coating, carbonization, and sulfidation/selenization. To address this issue, herein, we reported a series of carbon-coated FexSey@CN (FexSey = FeSe2, Fe3Se4, Fe7Se8) composites prepared via the thermodynamic transformation of a crystalline organic hybrid iron selenide [Fe(phen)2](Se4) (phen = 1,10-phenanthroline). By pyrolyzing the bulk crystals of [Fe(phen)2](Se4) at different temperatures, FexSey microrods were formed in situ, where the nitrogen-doped carbon layers were coated on the surface of the microrods. Moreover, all the as-prepared FexSey@CN composites exhibited excellent sodium-ion storage capabilities as anode materials in SIBs. This work proves that crystalline organic hybrid metal chalcogenides can be used as a novel material system for the in situ formation of carbon-coated metal chalcogenide composites, which could have great potential in the application of electrochemical energy storage.

11.
Phys Chem Chem Phys ; 24(43): 26398-26412, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314502

RESUMO

The subject of this perspective is the application of two-dimensional (2D) layered materials in surface-enhanced Raman spectroscopy (SERS). 2D materials are regarded as promising SERS substrates because of their inexpensive and non-toxic characteristics. However, compared with the traditional precious metal substrates, its enhancement factor and detection limit are lower. In this perspective, seven advanced strategies that can improve the SERS properties of 2D materials are highlighted, including layer-dependent strategy, defect engineering, regulation of excitation laser, electric field modulation, phase engineering, arrangement mode and heterostructure design. In addition, the enhancement mechanism, synthesis strategy and application status of typical examples of molybdenum disulfide (MoS2) and MXenes as SERS substrates are discussed in detail. Finally, the prospect of future progress in SERS and possible challenges of 2D layered materials have been put forward.

12.
Huan Jing Ke Xue ; 43(6): 3077-3087, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35686777

RESUMO

Microplastics as a prevalent pollutant in water bodies have recently attracted widespread attention. To investigate the spatial and temporal distribution characteristics of microplastics in freshwater rivers and their migration patterns, the surface water, sediments, and subsidence zone of the Xiangxi River, a tributary of the Yangtze River, were sampled and analyzed in November 2020 and April 2021, respectively. The results showed that the average abundance of microplastics in the surface water of Xiangxi River was (6.64±1.32) n·L-1 in flat water and (5.00±1.07) n·L-1 in dry water, the average abundance of microplastics in sediments was (0.56±0.13) n·g-1 in flat water and (0.41±0.09) n·g-1 in dry water, and the average abundance of microplastics in the subsidence zone was (0.53±0.15) n·g-1 in flat water and (0.68±0.18) n·g-1in dry water. There were significant differences in the abundance distribution of microplastics in the surface water, sediments, and subsidence zone (P<0.05). In the surface water and sediments, the particle size of microplastics was mainly distributed in the range of 0.1-0.5 mm, and in the subsidence zone, it mainly ranged from 1-5 mm. The color of microplastics was mainly transparent in the surface water and subsidence zone and blue in sediments. The morphology of microplastics in the Xiangxi River basin was mainly fiber, and the materials were mainly polyethylene (PE) and polypropylene (PP). There were many factors affecting the distribution of microplastics. The analysis results showed that the abundance of microplastics in the surface water was negatively correlated with the flow rate of the water body. The abundance of microplastics in the sediment was related to the substrate type of the riverbed and negatively correlated with the substrate particle size. Combined with the microplastic abundance data of each sampling site, it was found that there was a significant migration process of microplastics in the spatial distribution of the Xiangxi River in the watershed. Along the river longitudinal direction, the longitudinal migration of microplastics in the surface water was along the river direction, and in the vertical direction, it showed the mutual migration between the water body and the subsidence zone and the water body and sediments.


Assuntos
Microplásticos , Rios , Água Doce , Plásticos , Água
13.
Anal Chem ; 94(25): 9074-9080, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35694855

RESUMO

Fluorescent silicon nanodots have shown great prospects for bioimaging and biosensing applications. Although various fluorescent silicon-containing nanodots (SiNDs) have been developed, there are few reports about renal-clearable multicolor SiNDs. Herein, renal-clearable multicolor fluorescent SiNDs are synthesized by using silane molecules and organic dyes through a facile one-step hydrothermal method. The fluorescence of the resulting SiNDs can be tuned to blue (bSiNDs), green (gSiNDs), and red (rSiNDs) by simply changing the categories of silane reagents or dye molecules. The as-prepared SiNDs exhibit strong fluorescence with a quantum yield up to 72%, excellent photostability, and good biocompatibility with 12 h renal clearance rate as high as 86% ID. These properties enabled the SiNDs for tumor fluorescence imaging and H2O2 imaging in living cells and tissue through in situ reduction reaction-lighted fluorescence of the nanoprobe. Our results provide an invaluable methodology for the synthesis of renal-clearable multicolor SiNDs and their potential applications for fluorescence imaging and biomarker sensing. These SiNDs are also promising for various biological and biomedical applications.


Assuntos
Neoplasias , Pontos Quânticos , Corantes , Corantes Fluorescentes , Humanos , Peróxido de Hidrogênio , Neoplasias/diagnóstico por imagem , Imagem Óptica , Silanos , Silício
14.
Phys Chem Chem Phys ; 24(12): 7466-7473, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35274653

RESUMO

The electronic spectra and (hyper)polarizability of C18-(CO)n (n = 2, 4, and 6) are studied using theoretical calculations to reveal the effect of introducing carbonyl (-CO) groups on the molecular optical properties. Successive introduction of -CO groups is observed to cause a red-shift in the absorption spectrum, but maximum absorption of all molecules is mainly due to the charge redistribution within the C18 moiety. The (hyper)polarizabilities of the cyclocarbon oxides present an ascending trend with the -CO groups in the molecule, and the higher-order response properties are more sensitive. With (hyper)polarizability density analysis and (hyper)polarizability contribution decomposition, the fundamental reasons for the difference of (hyper)polarizability of different molecules are systematically discussed from the perspective of physical and structural origins, respectively. Significant optical resonances under the frequency-dependent fields are found for the (hyper)polarizabilities of the cyclocarbon oxides, which is in contrast to the insignificant influence on their polarizability.

15.
Anal Sci ; 38(2): 299-305, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35314975

RESUMO

We have developed a new method of one-step simultaneous detection for three pesticides including acetamiprid, atrazine and carbendazim based on organic framework nanomaterial Cu/UiO-66 and three different fluorescent dyes labeled pesticide aptamers. Cu/UiO-66 can be easily combined with pesticide aptamers through strong coordination, and then aptamers were adsorbed to the surface of Cu/UiO-66, which brings the dyes and Cu/UiO-66 into close proximity. Then, the fluorescence of dyes was quenched by Cu/UiO-66. When the target pesticides appeared, the aptamers reacted with corresponding target pesticides and formed special spatial structure, and then the dyes were far away from the surface of Cu/UiO-66 and the fluorescence of dyes is resumed. Thus, the one-step simultaneous detection for three pesticides can be achieved by synchronous fluorescence analysis. The detection limit of acetamiprid, atrazine and carbendazim were 0.1 nmol/L, 1.6 nmol/L, and 0.3 nmol/L, respectively. This method has a good sensitivity, low detection limit, and high selectivity. We have developed a new method of one-step simultaneous detection for three pesticides including acetamiprid, atrazine and carbendazim based on a multi-color fluorescent probe composed of bimetallic organic framework nanomaterials Cu/UiO-66 and three different fluorescent dyes and phosphate double-labeled aptamers of acetamiprid, atrazine and carbendazim.


Assuntos
Nanoestruturas , Praguicidas , Corantes Fluorescentes , Estruturas Metalorgânicas , Oligonucleotídeos , Ácidos Ftálicos
16.
Chemistry ; 28(7): e202103815, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897864

RESUMO

The bonding character, electron delocalization, and aromaticity of the cyclo[18]carbon (C18 ) precursors, C18 -(CO)n (n=6, 4, and 2), have been studied by combining quantum chemical calculations and various electronic wavefunction analyses with different physical bases. It was found that C18 -(CO)n (n=6, 4, and 2) molecules exhibit alternating long and short C-C bonds, and have out-of-plane and in-plane dual π systems (πout and πin ) perpendicular to each other, which are consistent with the relevant characteristics of C18 . However, the presence of carbonyl (-CO) groups significantly reduced the global electron conjugation of C18 -(CO)n (n=6, 4, and 2) compared to C18 . Specifically, the -CO group largely breaks the extensive delocalization of πin system, and the πout system is also affected by it but to a much lesser extent; as a consequence, C18 -(CO)n (n=6, 4, and 2) with larger n shows weaker overall aromaticity. Mostly because of the decreased but still apparent πout electron delocalization in the C18 -(CO)n (n=6, 4, and 2), a notable diatropic induced ring current under the action of external magnetic field is observed, demonstrating the clear aromatic characteristic in the molecules. The correlation between C18 -(CO)n (n=6, 4, and 2) and C18 in terms of the gradual elimination of -CO from the precursors showed that the direct elimination of two CO molecules in C18 -(CO)n (n=6, 4, and 2) has a synergistic mechanism, but it is kinetically infeasible under normal conditions due to the high energy barrier.

17.
ACS Appl Mater Interfaces ; 13(46): 55188-55197, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34757713

RESUMO

Rare-earth elements (REEs) in industrial wastewaters have great value for recycling and reuse, but their characteristic of low concentration poses a challenge to an efficient enrichment from wastewaters. In recent years, thiometallates featuring two-dimensional layers have shown great potential in the enrichment of REEs via the ion-exchange process. However, investigations on thiometallates featuring three-dimensional anionic frameworks for the recovery of REEs have not been reported. Herein, K2Sn2S5 (KTS-2), a thiostannate possessing a three-dimensional porous framework, was chosen as an ion-exchange material for capturing REEs from an aqueous solution. Indeed, KTS-2 exhibited excellent ion-exchange performance for all 16 REEs (except Pm). Specifically, KTS-2 displayed a high capture capacity (232.7 ± 7.8 mg/g) and a short equilibrium time (within 10 min) for Yb3+ ions. In addition, KTS-2 had a high distribution coefficient for Yb3+ ions (Kd > 105 mL/g) in the presence of excessive interfering ions. Impressively, KTS-2 could reach removal rates of above 95% for all 16 REEs in a large quantity of wastewater with low initial concentration (∼7 mg/L). Moreover, KTS-2 could be used as an eco-friendly material for ion exchange of REEs, since the released K+ cations would not cause secondary pollution to the water solution.

18.
Analyst ; 146(16): 5115-5123, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34269357

RESUMO

Dynamically monitoring intracellular glutathione (GSH), a crucial biomarker of oxidative stress, is of significance for the diagnosis and treatment of certain diseases. Although manganese dioxide (MnO2) based GSH fluorescent sensors have exhibited high sensitivity and good selectivity owing to the specific reactivity between GSH and MnO2, near-infrared (NIR) MnO2 based nanoprobes for GSH detection are scarce. Herein, we have developed a NIR activatable fluorescence nanoprobe for the imaging and determination of intracellular GSH based on a core-shell nanoparticle, consisting of NIR emitted gold nanocluster doped silica as the fluorescent core and manganese dioxide as the GSH-responsive shell (named AuNCs@MnO2). Due to the absorption competition mechanism, the outer MnO2 shell rather than the inner AuNCs core preferentially absorbed the excitation light, thus leading to fluorescence quenching of the inner AuNCs core. Upon addition of GSH, the fluorescence of the nanoprobe restored along with the reduction of MnO2 to Mn2+ because of the absorption competition disappearance-induced emission. The activatable fluorescence linearly increased upon changing the GSH concentration in the range of 2 to 5000 µM with a detection limit of 0.67 µM. The cytotoxicity test shows that the AuNCs@MnO2 nanoprobes have a good biocompatibility. After entering the cancer cells, the intracellular GSH degraded the outermost MnO2 shell and initiated the NIR fluorescence restoration of AuNCs, which can be used to monitor the dynamic change of intracellular GSH. This strategy provides an NIR-activatable way to detect GSH levels in living cells and offers a promising platform for the diagnosis and treatment of GSH-related diseases.


Assuntos
Nanopartículas , Pontos Quânticos , Glutationa , Humanos , Compostos de Manganês , Nanopartículas/toxicidade , Óxidos/toxicidade
19.
Nat Commun ; 12(1): 4457, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294701

RESUMO

The role of cis-elements and their aberrations remains unclear in esophageal squamous cell carcinoma (ESCC, further abbreviated EC). Here we survey 28 H3K27ac-marked active enhancer profiles and 50 transcriptomes in primary EC, metastatic lymph node cancer (LNC), and adjacent normal (Nor) esophageal tissues. Thousands of gained or lost enhancers and hundreds of altered putative super-enhancers are identified in EC and LNC samples respectively relative to Nor, with a large number of common gained or lost enhancers. Moreover, these differential enhancers contribute to the transcriptomic aberrations in ECs and LNCs. We also reveal putative driver onco-transcription factors, depletion of which diminishes cell proliferation and migration. The administration of chemical inhibitors to suppress the predicted targets of gained super-enhances reveals HSP90AA1 and PDE4B as potential therapeutic targets for ESCC. Thus, our epigenomic profiling reveals a compendium of reprogrammed cis-regulatory elements during ESCC carcinogenesis and metastasis for uncovering promising targets for cancer treatment.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Idoso , Carcinogênese/genética , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/secundário , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Código das Histonas/genética , Humanos , Metástase Linfática/genética , Masculino , Pessoa de Meia-Idade , Oncogenes , Fatores de Transcrição/genética
20.
Inorg Chem ; 60(7): 4337-4341, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749258

RESUMO

Imidazolium-based ionic liquids have been widely applied in the synthesis of organic hybrid chalcogenidometalates, while the other types of ionic liquids are rarely tried. Reported here is the first application of a pyridinium-based ionic liquid in the preparation of two main-group heterometallic selenides featuring isomorphic three-dimensional frameworks. Of particular interest is that three gallium-tin selenides possessing another type of three-dimensional framework have been prepared by replacing the pyridinium-based ionic liquid with imidalolium-based ionic liquids under the same reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...