Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38632976

RESUMO

This experiment aimed to investigate the effects of dietary iron supplementation from different sources on the reproductive performance of sows and the growth performance of piglets. A total of 87 sows with similar farrowing time were blocked by body weight at day 85 of gestation, and assigned to one of three dietary treatments (n = 29 per treatment): basal diet, basal diet supplemented with 0.2% ferrous sulfate (FeSO4), and basal diet supplemented with 0.2% iron sucrose, respectively, with 30% iron in both FeSO4 and iron sucrose. Compared with the control (CON) group, iron sucrose supplementation reduced the rate of stillbirth and invalid of neonatal piglets (P < 0.05), and the number of mummified fetuses was 0. Moreover, it also improved the coat color of newborn piglets (P < 0.05). At the same time, the iron sucrose could also achieve 100% estrus rate of sows. Compared with the CON group, FeSO4 and iron sucrose supplementation increased the serum iron content of weaned piglets (P < 0.05). In addition, iron sucrose increased serum transferrin level of weaned piglets (P < 0.05) and the survival rate of piglets (P < 0.05). In general, both iron sucrose and FeSO4 could affect the blood iron status of weaned piglets, while iron sucrose also had a positive effect on the healthy development of newborn and weaned piglets, and was more effective than FeSO4 in improving the performance of sows and piglets.


Sows need more iron to meet the requirements for their and offspring's growth during pregnancy and lactation. Exogenous iron supplementation may improve the reproductive performance of sows and the growth performance of piglets, but different sources of iron have different effects. This study facilitates the understanding of the effects of iron sucrose and ferrous sulfate on the reproductive performance of sows and the growth performance of piglets.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Suplementos Nutricionais , Reprodução , Animais , Feminino , Ração Animal/análise , Dieta/veterinária , Suínos/crescimento & desenvolvimento , Suínos/fisiologia , Reprodução/efeitos dos fármacos , Gravidez , Animais Recém-Nascidos , Ferro/administração & dosagem , Ferro/farmacologia , Compostos Ferrosos/farmacologia , Compostos Ferrosos/administração & dosagem , Óxido de Ferro Sacarado/farmacologia , Óxido de Ferro Sacarado/administração & dosagem , Ferro da Dieta/administração & dosagem , Ferro da Dieta/farmacologia
2.
J Sci Food Agric ; 104(7): 4453-4464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323723

RESUMO

BACKGROUND: It is reported that anti-enterovirus 71 (EV71) drugs have some side effects on human health. Notably, fungi plays a crucial role in promoting human health and anti-virus. Grifola frondosa is a type of large medicinal and edible fungi, rich in active substances. The present study aimed to investigate the anti-EV71 effect of G. frondosa and the potential active substances. RESULTS: In the present study, the water extract of G. frondosa was subjected to ethanol precipitation to obtain the water-extracted supernatant of G. frondosa (GFWS) and water-extracted precipitation of G. frondosa. Their inhibitory effects on EV71 virus were studied based on a cell model. The results showed that GFWS had stronger security and anti-EV71 effects. In addition, the chemical constituents of GFWS were identified by ultra-high performance liquid chromatography-tandem mass spectrometry, which were selected for further separation and purification. Three compounds, N-butylaniline, succinic acid and l-tryptophan, were isolated from GFWS by NMR spectroscopy. It is noteworthy that N-butylaniline and l-tryptophan were isolated and identified from the G. frondosa fruiting bodies for the first time. Our study found that l-tryptophan has anti-EV71 virus activity, which reduced EV71-induced apoptosis and significantly inhibited the replication process after virus adsorption. Furthermore, it could also bind to capsid protein VP1 to prevent the virus from attaching to the cells. CONCLUSION: l-tryptophan was an inhibitor of the EV71 virus, which could be used in infant nutrition and possibly provide a new drug to treat hand, foot and mouth disease. © 2024 Society of Chemical Industry.


Assuntos
Grifola , Humanos , Grifola/química , Triptofano , Água/química , Cromatografia Líquida de Alta Pressão
3.
J Med Genet ; 61(5): 459-468, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38296632

RESUMO

BACKGROUND: Townes-Brocks syndrome (TBS) is a rare genetic disorder characterised by multiple malformations. Due to its phenotypic heterogeneity and rarity, diagnosis and recognition of TBS can be challenging and there has been a lack of investigation of patients with atypical TBS in large cohorts and delineation of their phenotypic characteristics. METHODS: We screened SALL1 and DACT1 variants using next-generation sequencing in the China Deafness Genetics Consortium (CDGC) cohort enrolling 20 666 unrelated hearing loss (HL) cases. Comprehensive clinical evaluations were conducted on seven members from a three-generation TBS family. Combining data from previously reported cases, we also provided a landscape of phenotypes and genotypes of patients with TBS. RESULTS: We identified five novel and two reported pathogenic/likely pathogenic (P/LP) SALL1 variants from seven families. Audiological features in patients differed in severity and binaural asymmetry. Moreover, previously undocumented malformations in the middle and inner ear were detected in one patient. By comprehensive clinical evaluations, we further provide evidence for the causal relationship between SALL1 variation and certain endocrine abnormalities. Penetrance analysis within familial contexts revealed incomplete penetrance among first-generation patients with TBS and a higher disease burden among their affected offspring. CONCLUSION: This study presents the first insight of genetic screening for patients with TBS in a large HL cohort. We broadened the phenotypic-genotypic spectrum of TBS and our results supported an underestimated prevalence of TBS. Due to the rarity and phenotypic heterogeneity of rare diseases, broader spectrum molecular tests, especially whole genome sequencing, can improve the situation of underdiagnosis and provide effective recommendations for clinical management.


Assuntos
Anormalidades Múltiplas , Anus Imperfurado , Perda Auditiva Neurossensorial , Polegar/anormalidades , Fatores de Transcrição , Humanos , Mutação , Fatores de Transcrição/genética , Síndrome , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Fenótipo , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
AMB Express ; 13(1): 143, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087159

RESUMO

Our previous study revealed that dietary konjac flour (KF) could remodel gut microbiota and improve reproductive performance of sows, but its underlying mechanisms remain unclear. This experiment aimed to investigate how dietary KF improves reproductive performance of obese sows. Here, 60 sows were assigned into three groups according to their backfat thickness: normal backfat sows fed with control diet (CON-N), high backfat sows fed with control diet (CON-H) and high backfat sows fed with KF inclusion diet (KF-H). The characteristics of sows and piglets were recorded. Next, fecal microbiota transplantation (FMT) was performed on female mice, followed by recording the characteristics of female mice. The results showed that compared with CON-H group, KF-H group showed downtrend in stillbirth rate (P = 0.07), an increase in placental efficiency (P < 0.01) and average piglet weight (P < 0.01); coupled with a decrease in the values of homeostasis model assessment-insulin resistance (P < 0.01); as well as an increase in placental vascular density and protein expression of angiogenesis markers (P < 0.01). As expected, sows fed KF diets had improved abundance and diversity of gut microbiota. More importantly, compared with CON-H(FMT) group, KF-H(FMT) group showed improvement in reproductive performance and insulin sensitivity (P < 0.05), as well as an increase in placental labyrinth zone and protein expression of angiogenesis markers (P < 0.05). Furthermore, we found a content increase (P < 0.05) of SCFAs in both KF-H group sow and KF-H (FMT) group mice. Overall, KF supplementation could alleviate insulin resistance, promote placental angiogenesis, and ultimately improve the reproductive performance of sows via gut microbiota remodeling.

5.
Sci Adv ; 9(44): eadi7337, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922350

RESUMO

Inflammation-associated insulin resistance is a key trigger of gestational diabetes mellitus (GDM), but the underlying mechanisms and effective interventions remain unclear. Here, we report the association of placental inflammation (tumor necrosis factor-α) and abnormal maternal glucose metabolism in patients with GDM, and a high fermentable dietary fiber (HFDF; konjac) could reduce GDM development through gut flora-short-chain fatty acid-placental inflammation axis in GDM mouse model. Mechanistically, HFDF increases abundances of Lachnospiraceae and butyrate, reduces placental-derived inflammation by enhancing gut barrier and inhibiting the transfer of bacterial-derived lipopolysaccharide, and ultimately resists high-fat diet-induced insulin resistance. Lachnospiraceae and butyrate have similar anti-GDM and anti-placental inflammation effects, and they can ameliorate placental function and pregnancy outcome effects probably by dampening placental immune dysfunction. These findings demonstrate the involvement of important placental inflammation-related mechanisms in the progression of GDM and the great potential of HFDFs to reduce susceptibility to GDM through gut-flora-placenta axis.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Animais , Camundongos , Gravidez , Humanos , Feminino , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Placenta/metabolismo , Butiratos/farmacologia , Butiratos/metabolismo , Inflamação/metabolismo
6.
Plant Foods Hum Nutr ; 78(4): 783-789, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812276

RESUMO

Grifola frondosa, an edible and medicinal resource, is widely used as functional foods worldwide. To explore bioactive compounds against α-glucosidase, human tumor cells and enterovirus 71 (EV71), eight compounds were isolated from G. frondosa by chromatographic column. Among the isolated compounds, heptadecanoic acid, uridine and adenosine exhibited potent inhibition activity against α-glucosidase, ergosterols and ergosterol-5,8-peroxide showed anti-proliferative activity on tumor cells, while ergosterol and methyl linoleate displayed inhibition against the replication of EV71. Also, to our knowledge, this is the first study to report that fatty acids isolated from G. frondosa show potent inhibition against α-glucosidase and EV71. Further molecular docking results revealed that the active compounds in G. frondosa form hydrogen bonding, hydrophobic interactive and π-stacking with the active sites on the surface of α-glucosidase, CASP3 and VP1 proteins, thus promoting the active compounds to combine with the target protein to form a stable complex, thus playing an antagonistic role. Our results could provide a new active compound and mode of action for G. frondosa to treat diabetes, cancer and EV71-infected patients.


Assuntos
Grifola , Humanos , Grifola/química , Grifola/metabolismo , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular
7.
Mol Nutr Food Res ; 67(9): e2200766, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37005336

RESUMO

SCOPE: To investigate anti-aging effects of probiotic-fermented kelp enzymatic hydrolysate culture (KMF), probiotic-fermented kelp enzymatic hydrolysate supernatant (KMFS), and probiotic-fermented kelp enzymatic hydrolysate bacteria suspension (KMFP) in D-galactose-induced aging mice. METHODS AND RESULTS: The study uses a probiotic-mixture of Lactobacillus reuteri, Pediococcus pentosaceus, and Lactobacillus acidophilus strains for kelp fermentation. KMF, KMFS, and KMFP prevent D-galactose-induced elevation of malondialdehyde levels in serum and brain tissue of aging mice, and they increase superoxide dismutase and catalase levels and total antioxidant capacity. Furthermore, they improve the cell structure of mouse brain, liver, and intestinal tissue. Compared with the model control group, the KMF, KMFS, and KMFP treatments regulate mRNA and protein levels of genes associated with aging, the concentrations of acetic acid, propionic acid, and butyric acid in the three treatment groups are more than 1.4-, 1.3-, and 1.2-fold increased, respectively. Furthermore, the treatments affect the gut microbiota community structures. CONCLUSIONS: These results suggest that KMF, KMFS, and KMFP can modulate gut microbiota imbalances and positively affect aging-related genes to achieve anti-aging effects.


Assuntos
Microbioma Gastrointestinal , Kelp , Probióticos , Animais , Camundongos , Estresse Oxidativo , Galactose , Fermentação , Envelhecimento/fisiologia , Probióticos/farmacologia
8.
Arterioscler Thromb Vasc Biol ; 43(6): e190-e209, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051927

RESUMO

BACKGROUND: Abnormal placental angiogenesis is an important cause of fetal intrauterine growth restriction (IUGR), but its underlying mechanisms and therapies remain unclear. Adenosine and its mediated signaling has been reported to be associated with the development of angiogenesis. However, whether the adenosine-related signaling plays a role in modulating angiogenesis in placenta and the IUGR pregnancy outcomes remains unclear. METHODS: The angiogenesis and adenosine signaling expressions in normal and IUGR placentas were detected in different species. And the role of adenosine in regulating IUGR pregnancy outcomes was evaluated using diet-induced IUGR mouse model. Molecular mechanisms underlying adenosine-induced angiogenesis were investigated by in vitro angiogenesis assays and in vivo Matrigel plug assays. RESULTS: Here, we demonstrated poor angiogenesis and low adenosine concentration and downregulated expression of its receptor A2a (ADORA2A [adenosine A2a receptor]) in IUGR placenta. Additionally, the beneficial effects of adenosine in improving IUGR pregnancy outcomes were revealed in a diet-induced IUGR mouse model. Moreover, adenosine was found to effectively improve adenosine signaling and angiogenesis in IUGR mice placenta. Mechanistically, by using angiogenesis assays in vitro and in vivo, adenosine was shown to activate ADORA2A to promote the phosphorylation of Stat3 (signal transducer and activator of transcription 3) and Akt (protein kinase B), resulting in increased Ang (angiogenin)-dependent angiogenesis. CONCLUSIONS: Collectively, this study uncovers an unexpected mechanism of promoting placental angiogenesis by adenosine-ADORA2A signaling and advances the translation of this signaling as a prognostic indicator and therapeutic target in IUGR treatment.


Assuntos
Placenta , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Humanos , Camundongos , Gravidez , Retardo do Crescimento Fetal/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor A2A de Adenosina/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Food Funct ; 13(22): 11758-11769, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36285656

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic disease mainly caused by insufficient insulin secretion and insulin resistance. In addition, T2DM is often accompanied by dysregulation of lipid metabolism and inflammatory response. The effect of oral administration of a Sanghuangporus vaninii mixture (SVM) on T2DM mice was evaluated. The results showed that SVM intervention could change body weight and glucose/lipid metabolism-related indicators. In addition, it can also improve the level of inflammatory factors to play a protective role in the pancreas and the jejunum. 16S rRNA gene sequencing analysis indicated that SVM intervention significantly altered the intestinal microbiota in mice, elevating the relative abundances of Bacteroidetes, Verrucomicrobia, Akkermansia, Alloprevotella, and Blautia, and decreasing the relative abundances of Firmicutes, Lactobacillus, Flavonifractor, and Odoribacter in the feces of diabetic mice, compared with the model group. Moreover, the functional modules of fatty acid degradation, glycerolipid metabolism, purine metabolism, histidine metabolism, folate biosynthesis, GABAergic synapse, etc. were regulated by SVM intervention in T2DM mice. Additionally, integrative correlation analysis revealed that the representative intestinal microbes in response to SVM intervention in diabetic mice were markedly related to glucose/lipid metabolism-related indicators (e.g. blood glucose, insulin resistance, lipid indexes, and inflammatory factors). Hence, these findings suggest that the SVM could modulate the structure, abundance, and function of intestinal microbiota to potentially ameliorate T2DM and its complications (e.g. hyperglycemia, hyperlipidemia, and inflammation) in mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Diabetes Mellitus Experimental/tratamento farmacológico , RNA Ribossômico 16S/genética , Glucose/metabolismo
10.
Plant Foods Hum Nutr ; 77(2): 292-298, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35657501

RESUMO

The aim of the present study was to investigate the anti-diabetic effect of CGSGCG and its beneficial effects on gut microbiota in type 2 diabetes (T2D) mice induced by streptozotocin and high sucrose and high fat diet. The results showed that treatment with CGSGCG reduced fasting blood glucose, improved oral glucose tolerance test, protected the liver from injury, and reduced inflammation in T2D mice. The contents of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid and isovaleric acid in CGSGCG group were 2.49-, 1.74-, 3.31-, 1.93-, 1.36- and 1.30-fold than that of the model group. Moreover, administration of CGSGCG up-regulated the expression of INSR/IRS-1/PI3K/AKT/GLUT4 and mTOR but down-regulated the P38MAPK expression. Furthermore, the abundance of beneficial bacteria such as Verrucomicrobia, Proteobacteria, Osillibacter, Dubosiella and Lactococcus in intestinal tract increased, indicating that CGSCGG regulated and improved the bacterial community structure of T2D mice, which were closely related to glycometabolism.


Assuntos
Chlorella , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Chlorella/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica , Camundongos , Fosfatidilinositol 3-Quinases/farmacologia
11.
J Anim Sci Biotechnol ; 13(1): 28, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232472

RESUMO

The fertility of sows mainly depends on the embryo losses during gestation and the survival rate of the post-farrowing piglets. The selection of highly-prolific sows has been mainly focused on the selection of genotypes with high ovulatory quota. However, in the early- and post-implantation stages, the rate of embryo losses was increased with the increase of zygotes. Among the various factors, placental growth and development is the vital determinant for fetal survival, growth, and development. Despite the potential survival of fetuses with deficient placental development, their life-conditions and growth can be damaged by a process termed intrauterine growth retardation (IUGR). The newborn piglets affected by IUGR are prone to increased morbidity and mortality rates; meanwhile, the growth, health and welfare of the surviving piglets will remain hampered by these conditions, with a tendency to exacerbate with age. Functional amino acids such as glycine, proline, and arginine continue to increase with the development of placenta, which are not only essential to placental growth (including vascular growth) and development, but can also be used as substrates for the production of glutathione, polyamines and nitric oxide to benefit placental function in many ways. However, the exact regulation mechanism of these amino acids in placental function has not yet been clarified. In this review, we provide evidence from literature and our own work for the role and mechanism of dietary functional amino acids during pregnancy in regulating the placental functional response to fetal loss and birth weight of piglets. This review will provide novel insights into the response of nutritionally nonessential amino acids (glycine and proline) to placental development as well as feasible strategies to enhance the fertility of sows.

12.
Mol Genet Genomic Med ; 9(9): e1770, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34323021

RESUMO

BACKGROUND: Waardenburg syndrome (WS) is a rare autosomal-dominant syndrome and is characterized by sensorineural hearing loss and pigment abnormalities. It is subdivided into four types according to the clinical characteristics. MITF is one of the major pathogenic genes for type II. The aim of this study was to investigate MITF mutations and the clinical characteristics of WS type 2 (WS2) in four Chinese families. METHOD: Clinical diagnoses were based on detailed clinical findings. Six WS2 patients from four unrelated Chinese families were enrolled. Massively parallel DNA sequencing was used to find pathogenic genes and Sanger sequencing was used to confirm the variants detected. RESULTS: Sensorineural hearing loss was observed in four of six patients, three had heterochromia iridis, and five have freckled faces. We identified three novel MITF heterozygous mutations (c.831dupC, c.650G>A, and c.711-2A>G) and one recurrent heterozygous mutation (c.328C>T) in the four WS2 families. Intra-familial phenotypic variability and incomplete penetrance were found in WS2 patients with pathogenic variants of MITF. CONCLUSION: Genetic diagnosis was performed for the involved four families based on the clinical manifestations. Four heterozygous mutations were identified in the MITF gene. Our findings expanded the phenotypic and genotypic spectrum of WS.


Assuntos
Fator de Transcrição Associado à Microftalmia/genética , Síndrome de Waardenburg/genética , Adulto , China , Feminino , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Síndrome de Waardenburg/patologia
13.
Mol Genet Genomic Med ; 9(2): e1591, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33452876

RESUMO

BACKGROUND: Biotinidase deficiency (OMIM 253260) is an autosomal recessively inherited disorder affecting about 1/60,000 people worldwide. The absence or deficiency of biotinidase impairs free biotin recycling and affects biotin-dependent carboxylase functions. METHODS: A Chinese patient with spontaneous recurrent epilepsy, an eczema-like rash, hair loss, hypotonia, and hearing loss began at three months of age. Her biotinidase activity was 1.0 nmol/ml/min, 9.5% of the mean control activity, which confirmed profound biotinidase deficiency. RESULTS: Compound heterozygous for c.250-1G > C and c.878dupT variants in the BTD gene were identified in this patient. These two variants were novel and absent in the population matched controls and any databases. CONCLUSIONS: This study expanded the mutation spectrum of alterations of the BTD gene. Our patient also emphasized the critical role of biotinidase activity measurement combined with mutation analysis in early diagnosis of biotinidase deficiency.


Assuntos
Deficiência de Biotinidase/genética , Biotinidase/genética , Fenótipo , Adolescente , Biotinidase/metabolismo , Deficiência de Biotinidase/patologia , Feminino , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...