Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; : 148558, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740353

RESUMO

Recessive genic male sterility (RGMS) provides an effective approach for the commercial exploitation of heterosis, especially in Brassica crops. Although some artificial RGMS mutants have been reported in B. rapa, no causal genes derived from these natural mutants have been identified so far. In this study, a spontaneous RGMS mutant Bcajh97-01A derived from the 'Aijiaohuang' line traced back to the 1980 s was identified. Genetic analysis revealed that the RGMS trait was controlled by a single locus in the Bcajh97-01A/B system. Bulk segregant analysis (BSA) in combination with linkage analysis was employed to delimit the causal gene to an approximate 129 kb interval on chromosome A02. The integrated information of transcriptional levels and the predicted genes in the target region indicated that the Brmmd1 (BraA02g017420) encoding a PHD-containing nuclear protein was the most likely candidate gene. A 374 bp miniature inverted-repeat transposable element (MITE) was inserted into the first exon to prematurely stop the Brmmd1 gene translation, thus blocking the normal expression of this gene at the tetrad stage in the Bcajh97-01A. Additionally, a co-segregating structure variation (SV) marker was developed to rapidly screen the RGMS progenies from Bcajh97-01A/B system. Our findings reveal that BraA02g017420 is the causal gene responsible for the RGMS trait. This study lays a foundation for marker-assisted selection and further molecular mechanism exploration of pollen development in B. rapa.

2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069184

RESUMO

The membrane-less organelles in cytoplasm that are presented as cytoplasmic foci were successively identified. Although multiple CCCH zinc-finger proteins have been found to be localized in cytoplasmic foci, the relationship between their specific localization and functions still needs further clarification. Here, we report that the heterologous expression of two Brassica campestris CCCH zinc-finger protein genes (BcMF30a and BcMF30c) in Arabidopsis thaliana can affect microgametogenesis by involving the formation of cytoplasmic foci. By monitoring the distribution of proteins and observing pollen phenotypes, we found that, when these two proteins were moderately expressed in pollen, they were mainly dispersed in the cytoplasm, and the pollen developed normally. However, high expression induced the assembly of cytoplasmic foci, leading to pollen abortion. These findings suggested that the continuous formation of BcMF30a/BcMF30c-associated cytoplasmic foci due to high expression was the inducement of male sterility. A co-localization analysis further showed that these two proteins can be recruited into two well-studied cytoplasmic foci, processing bodies (PBs), and stress granules (SGs), which were confirmed to function in mRNA metabolism. Together, our data suggested that BcMF30a and BcMF30c play component roles in the assembly of pollen cytoplasmic foci. Combined with our previous study on the homologous gene of BcMF30a/c in Arabidopsis, we concluded that the function of these homologous genes is conserved and that cytoplasmic foci containing BcMF30a/c may participate in the regulation of gene expression in pollen by regulating mRNA metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Proteínas de Arabidopsis/genética , Pólen/genética , Pólen/metabolismo , RNA Mensageiro/metabolismo , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Dedos de Zinco/genética
3.
Front Plant Sci ; 13: 932793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909782

RESUMO

Plant CCCH zinc-finger proteins form a large family of regulatory proteins function in many aspects of plant growth, development and environmental responses. Despite increasing reports indicate that many CCCH zinc-finger proteins exhibit similar subcellular localization of being localized in cytoplasmic foci, the underlying molecular mechanism and the connection between this specific localization pattern and protein functions remain largely elusive. Here, we identified another cytoplasmic foci-localized CCCH zinc-finger protein, AtC3H18, in Arabidopsis thaliana. AtC3H18 is predominantly expressed in developing pollen during microgametogenesis. Although atc3h18 mutants did not show any abnormal phenotype, possibly due to redundant gene(s), aberrant AtC3H18 expression levels caused by overexpression resulted in the assembly of AtC3H18-positive granules in a dose-dependent manner, which in turn led to male sterility phenotype, highlighting the importance of fine-tuned AtC3H18 expression. Further analyzes demonstrated that AtC3H18-positive granules are messenger ribonucleoprotein (mRNP) granules, since they can exhibit liquid-like physical properties, and are associated with another two mRNP granules known as processing bodies (PBs) and stress granules (SGs), reservoirs of translationally inhibited mRNAs. Moreover, the assembly of AtC3H18-positive granules depends on mRNA availability. Combined with our previous findings on the AtC3H18 homologous genes in Brassica campestris, we concluded that appropriate expression level of AtC3H18 during microgametogenesis is essential for normal pollen development, and we also speculated that AtC3H18 may act as a key component of mRNP granules to modulate pollen mRNAs by regulating the assembly/disassembly of mRNP granules, thereby affecting pollen development.

4.
Sci Rep ; 11(1): 4913, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649480

RESUMO

The objectives of this two-year field experiment were (1) to study the effect of irrigation frequency and irrigation amount on the root characteristics of drip-irrigated spring wheat (Triticum aestivum L.) and (2) to determine the relationship between these root characteristics and aboveground biomass and yield. A split-plot design was used with two wheat cultivars (Xinchun 6 and Xinchun 22). The irrigation treatments consisted of three irrigation intervals (D1, 13 d; D2, 10 d; and D3, 7 d) and three water amounts (W1, 3750 m3/ha; W2, 6000 m3/ha; and W3, 8250 m3/ha). The results showed that root length density (RLD) and root weight density (RWD) were greater at 0-20 cm than at 20-40 cm at flowering. The RLD was greater in D1 and D2 than in D3 in the shallow soil layer and did not differ among the treatments with different irrigation frequencies in deep soil. The RLD at the 0-20 cm depth of W3 was 17.9% greater than that of W2 and 53.8% greater than that of W1, and the RLD trend was opposite at the 20-40 cm depth. The root-shoot ratio was significantly higher in D2 than in the other treatment, whereas the RLD, RWD, leaf Pn and LAI were significantly greater in D3. Leaf Pn and LAI both increased as the irrigation amount increased. Regression analysis showed a natural logarithmic relationship between RWD and aboveground biomass (R2 > 0.60, P < 0.05) and binomial relationships of the RWD at 0-20 cm depth (R2 = 0.43, P < 0.05) and the RLD at 20-40 cm depth (R2 = 0.34, P < 0.05) with grain yield. We found that with the optimum irrigation amount (W2), increasing drip irrigation frequency can increase wheat root length and root weight and aboveground biomass accumulation, thereby improving yield and water use efficiency.

5.
Genes (Basel) ; 11(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138166

RESUMO

The pollen grains produced by flowering plants are vital for sexual reproduction. Previous studies have shown that two CCCH-type zinc-finger protein genes in Brassica campestris, BcMF30a and BcMF30c, are involved in pollen development. Due to their possible functional redundancy, gain-of-function analysis is helpful to reveal their respective biological functions. Here, we found that the phenotypes of BcMF30a and BcMF30c overexpression transgenic plants driven by their native promoters were similar, suggesting their functional redundancy. The results showed that the vegetative growth was not affected in both transgenic plants, but male fertility was reduced. Further analysis found that the abortion of transgenic pollen was caused by the degradation of pollen contents from the late uninucleate microspore stage. Subcellular localization analysis demonstrated that BcMF30a and BcMF30c could localize in cytoplasmic foci. Combined with the studies of other CCCH-type genes, we speculated that the overexpression of these genes can induce the continuous assembly of abnormal cytoplasmic foci, thus resulting in defective plant growth and development, which, in this study, led to pollen abortion. Both the overexpression and knockout of BcMF30a and BcMF30c lead to abnormal pollen development, indicating that the appropriate expression levels of these two genes are critical for the maintenance of normal pollen development.


Assuntos
Brassica/genética , Pólen/genética , Brassica/crescimento & desenvolvimento , Brassica/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/ultraestrutura , Regulação para Cima , Dedos de Zinco/genética
6.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899329

RESUMO

Chinese cabbage (Brassica campestris) is an economically important leaf vegetable crop worldwide. Mounting studies have shown that cysteine-cysteine-cysteine-histidine (CCCH) zinc-finger protein genes are involved in various plant growth and development processes. However, research on the involvement of these genes in male reproductive development is still in its infancy. Here, we identified 11 male fertility-related CCCH genes in Chinese cabbage. Among them, a pair of paralogs encoding novel non-tandem CCCH zinc-finger proteins, Brassica campestris Male Fertility 30a (BcMF30a) and BcMF30c, were further characterized. They were highly expressed in pollen during microgametogenesis and continued to express in germinated pollen. Further analyses demonstrated that both BcMF30a and BcMF30c may play a dual role as transcription factors and RNA-binding proteins in plant cells. Functional analysis showed that partial bcmf30a bcmf30c pollen grains were aborted due to the degradation of pollen inclusion at the microgametogenesis phase, and the germination rate of viable pollen was also greatly reduced, indicating that BcMF30a and BcMF30c are required for both pollen development and pollen germination. This research provided insights into the function of CCCH proteins in regulating male reproductive development and laid a theoretical basis for hybrid breeding of Chinese cabbage.


Assuntos
Brassica/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Dedos de Zinco , Brassica/metabolismo , Proteínas de Plantas/genética , Pólen/metabolismo
7.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408673

RESUMO

Expansins are a kind of structural proteins of the plant cell wall, and they enlarge cells by loosening the cell walls. Therefore, expansins are involved in many growth and development processes. The complete genomic sequences of Brassica rapa, Brassica oleracea and Brassica nigra provide effective platforms for researchers to study expansin genes, and can be compared with analogues in Arabidopsis thaliana. This study identified and characterized expansin families in B. rapa, B. oleracea, and B. nigra. Through the comparative analysis of phylogeny, gene structure, and physicochemical properties, the expansin families were divided into four subfamilies, and then their expansion patterns and evolution details were explored accordingly. Results showed that after the three species underwent independent evolution following their separation from A. thaliana, the expansin families in the three species had increased similarities but fewer divergences. By searching divergences of promoters and coding sequences, significant positive correlations were revealed among orthologs in A. thaliana and the three basic species. Subsequently, differential expressions indicated extensive functional divergences in the expansin families of the three species, especially in reproductive development. Hence, these results support the molecular evolution of basic Brassica species, potential functions of these genes, and genetic improvement of related crops.


Assuntos
Brassica/genética , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/genética , Brassica/classificação , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Diploide , Duplicação Gênica , Genoma de Planta/genética , Filogenia , Especificidade da Espécie , Sintenia
8.
Biochem Biophys Res Commun ; 528(1): 140-145, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32451083

RESUMO

The membraneless messenger ribonucleoprotein (mRNP) granules, including processing bodies (PBs) and stress granules (SGs), are important cytoplasmic structures in eukaryotes that can participate in gene expression through mRNA regulation. It has been verified that mRNP granules are mainly composed of proteins and translation-repressed mRNAs. Here, we reported a stop-codon read-through gene, At3g52980, in plants for the first time. At3g52980 encodes a novel non-tandem CCCH zinc-finger (non-TZF) protein named AtC3H18-Like (AtC3H18L), which contains two putative RNA-binding domains. By using transient expression system, we showed that heat treatment can induce the aggregation of diffuse distributed AtC3H18L to form cytoplasmic foci, which were similar to PBs and SGs in morphology. Further analysis did find that AtC3H18L can co-localize with markers of PB and SG. The aggregation of AtC3H18L was closely related to the cytoskeleton, and AtC3H18L-foci were highly dynamic and can move frequently along cytoskeleton. Moreover, analysis in transgenic plants showed that AtC3H18L was specifically expressed in pollen and can form cytoplasmic foci without heat treatment. It will be fascinating in future studies to discover whether and how AtC3H18L affects pollen development by participating in the assembly of mRNP granules as a protein component, especially under heat stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Códon de Terminação/genética , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Dedos de Zinco , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Inflorescência/metabolismo , Epiderme Vegetal/citologia , Plantas Geneticamente Modificadas , Pólen/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Frações Subcelulares/metabolismo , Nicotiana/genética
9.
Plant Mol Biol ; 102(1-2): 123-141, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776846

RESUMO

KEY MESSAGE: Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.


Assuntos
Brassica rapa/genética , Dedos de Zinco CYS2-HIS2/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Motivos de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica rapa/metabolismo , Dedos de Zinco CYS2-HIS2/fisiologia , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Glucuronidase/metabolismo , Filogenia , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Mapas de Interação de Proteínas
10.
Biochem Biophys Res Commun ; 517(1): 63-68, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31320138

RESUMO

Pollen wall development is one of the key processes of pollen development. Several pectin methylesterase (PME) genes participate in pollen germination and pollen tube growth. However, the relationship between PME genes and pollen intine formation remains unclear. In this study, we investigated the expression and subcellular localization of the PME gene BcPME37c in Brassica campestris. Furthermore, morphology and cytology methods were used to examine the phenotype of the CRISPR/Cas9 system-induced BcPME37c mutant. We found that BcPME37c is predominately expressed in mature stamen and located at the cell wall. BcPME37c mutation causes the abnormal thickening of the pollen intine of B. campestris. Our study indicated that BcPME37c is required for pollen intine formation in B. campestris.


Assuntos
Brassica/genética , Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pólen/genética , Brassica/crescimento & desenvolvimento , Germinação , Pólen/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento
11.
Mol Genet Genomics ; 294(5): 1251-1261, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31129735

RESUMO

Conventional methods for gene function study in Brassica campestris have lots of drawbacks, which greatly hinder the identification of important genes' functions and molecular breeding. The clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) system is a versatile tool for genome editing that has been widely utilized in many plant species and has many advantages over conventional methods for gene function study. However, the application of CRISPR/Cas9 system in B. campestris remains unreported. The pectin-methylesterase genes Bra003491, Bra007665, and Bra014410 were selected as the targets of the CRISPR/Cas9 system. A single-targeting vector and a multitargeting vector were constructed. Different types of mutations were detected in T0 generation through Agrobacterium transformation. The mutation rate of the three designed sgRNA seeds varied from 20 to 56%. Although the majority of T0 mutants were chimeric, four homozygous mutants were identified. Transformation with the multitargeting vector generated one line with a large fragment deletion and one line with mutations in two target genes. Mutations in Bra003491 were stable and inherited by T1 and T2 generations. Nine mutants which did not contain T-DNA insertions were also obtained. No mutations were detected in predicted potential off-target sites. Our work demonstrated that CRISPR/Cas9 system is efficient on single and multiplex genome editing without off-targeting in B. campestris and that the mutations are stable and inheritable. Our results may greatly facilitate gene functional studies and the molecular breeding of B. campestris and other plants.


Assuntos
Brassica/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Agrobacterium/genética , Cruzamento/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Genes de Plantas/genética , Homozigoto , Mutação/genética , Taxa de Mutação , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
12.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373125

RESUMO

The activities of pectin methylesterases (PMEs) are regulated by pectin methylesterase inhibitors (PMEIs), which consequently control the pectin methylesterification status. However, the role of PMEI genes in Brassica oleracea, an economically important vegetable crop, is poorly understood. In this study, 95 B. oleracea PMEI (BoPMEI) genes were identified. A total of 77 syntenic ortholog pairs and 10 tandemly duplicated clusters were detected, suggesting that the expansion of BoPMEI genes was mainly attributed to whole-genome triplication (WGT) and tandem duplication (TD). During diploidization after WGT, BoPMEI genes were preferentially retained in accordance with the gene balance hypothesis. Most homologous gene pairs experienced purifying selection with ω (Ka/Ks) ratios lower than 1 in evolution. Five stamen-specific BoPMEI genes were identified by expression pattern analysis. By combining the analyses of expression and evolution, we speculated that nonfunctionalization, subfunctionalization, neofunctionalization, and functional conservation can occur in the long evolutionary process. This work provides insights into the characterization of PMEI genes in B. oleracea and contributes to the further functional studies of BoPMEI genes.


Assuntos
Brassica/genética , Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Brassica/enzimologia , Diploide , Evolução Molecular , Duplicação Gênica , Família Multigênica , Transcriptoma
13.
Int J Mol Sci ; 19(5)2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724020

RESUMO

Pectin methylesterase inhibitor genes (PMEIs) are a large multigene family and play crucial roles in cell wall modifications in plant growth and development. Here, a comprehensive analysis of the PMEI gene family in Brassicacampestris, an important leaf vegetable, was performed. We identified 100 BrassicacampestrisPMEI genes (BcPMEIs), among which 96 BcPMEIs were unevenly distributed on 10 chromosomes and nine tandem arrays containing 20 BcPMEIs were found. We also detected 80 pairs of syntenic PMEI orthologs. These findings indicated that whole-genome triplication (WGT) and tandem duplication (TD) were the main mechanisms accounting for the current number of BcPMEIs. In evolution, BcPMEIs were retained preferentially and biasedly, consistent with the gene balance hypothesis and two-step theory, respectively. The molecular evolution analysis of BcPMEIs manifested that they evolved through purifying selection and the divergence time is in accordance with the WGT data of B. campestris. To obtain the functional information of BcPMEIs, the expression patterns in five tissues and the cis-elements distributed in promoter regions were investigated. This work can provide a better understanding of the molecular evolution and biological function of PMEIs in B. campestris.


Assuntos
Brassica/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/classificação , Análise de Sequência de DNA , Análise de Sequência de Proteína , Sintenia , Sequências de Repetição em Tandem/genética
14.
Mol Biol Rep ; 44(1): 139-148, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27844189

RESUMO

Two homologous genes, Brassica campestris Male Fertility 23a (BcMF23a) and Brassica campestris Male Fertility 23b (BcMF23b), encoding putative pectin methylesterases (PMEs) were isolated from Brassica campestris ssp. chinensis (syn. Brassica rapa ssp. chinensis). These two genes sharing high sequence identity with each other were highly expressed in the fertile flower buds but silenced in the sterile ones of genic male sterile line system ('Bcajh97-01A/B'). Results of RT-PCR and in situ hybridization suggested that BcMF23a and BcMF23b were pollen-expressed genes, whose transcripts were first detected at the binucleate pollen and maintained throughout to the mature pollen grains. Western blot indicated that both of the putative BcMF23a and BcMF23b proteins are approximately 40 kDa, which exhibited extracellular localization revealed by transient expression analysis in the onion epidermal cells. The promoter of BcMF23a was active specifically in pollen during the late pollen developmental stages, while, in addition to the pollen, BcMF23b promoter drove an extra gene expression in the valve margins, abscission layer at the base of the first true leaves, taproot and lateral roots in seedlings.


Assuntos
Brassica/enzimologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular/métodos , Pólen/crescimento & desenvolvimento , Brassica/genética , Brassica/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Peso Molecular , Pectinas/metabolismo , Infertilidade das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Regiões Promotoras Genéticas
15.
PLoS One ; 10(7): e0131173, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26153985

RESUMO

Polygalacturonase (PG) is one of the cell wall hydrolytic enzymes involving in pectin degradation. A comparison of two highly conserved duplicated PG genes, namely, Brassica campestris Male Fertility 26a (BcMF26a) and BcMF26b, revealed the different features of their expression patterns and functions. We found that these two genes were orthologous genes of At4g33440, and they originated from a chromosomal segmental duplication. Although structurally similar, their regulatory and intron sequences largely diverged. QRT-PCR analysis showed that the expression level of BcMF26b was higher than that of BcMF26a in almost all the tested organs and tissues in Brassica campestris. Promoter activity analysis showed that, at reproductive development stages, BcMF26b promoter was active in tapetum, pollen grains, and pistils, whereas BcMF26a promoter was only active in pistils. In the subcellular localization experiment, BcMF26a and BcMF26b proteins could be localized to the cell wall. When the two genes were co-inhibited, pollen intine was formed abnormally and pollen tubes could not grow or stretch. Moreover, the knockout mutants of At4g33440 delayed the growth of pollen tubes. Therefore, BcMF26a/b can participate in the construction of pollen wall by modulating intine information and BcMF26b may play a major role in co-inhibiting transformed plants.


Assuntos
Brassica/genética , Duplicação Gênica , Proteínas de Plantas/genética , Tubo Polínico/crescimento & desenvolvimento , Pólen/genética , Poligalacturonase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Brassica/enzimologia , Cromossomos de Plantas/genética , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Duplicados , Germinação , Proteínas de Fluorescência Verde/metabolismo , Íntrons , MicroRNAs/metabolismo , Mutação , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Poligalacturonase/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...