Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Environ Manage ; 310: 114705, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217444

RESUMO

The present study has proposed a selective Li+ extraction process using a novel extractant of dibenzo-14-crown-4 ether functionalized with an alkyl C16 chain (DB14C4-C16) synthesized based on the ion imprinting technology (IIT). Theoretical analysis of the possible complexes formed by DB14C4-C16 with Li+ and the competing ions of Na+, K+, Ca2+ and Mg2+ was performed through density functional theory (DFT) modeling. The Gibbs free energy change of the complexes of metal ions with DB14C4-C16 and water molecules were calculated to be -125.81 and -166.01 kJ/mol for lithium, -55.73 and -117.77 kJ/mol for sodium, and -196.02 and -291.52 kJ/mol for magnesium, respectively. Furthermore, the solvent extraction experiments were carried out in both single Li+ and multi-ions containing solutions, and the results delivered a good selectivity of DB14C4-C16 towards Li+ over the competing ions, showing separation coefficients of 68.09 for Ca2+-Li+, 24.53 for K+-Li+, 16.32 for Na+-Li+, and 3.99 for Mg2+-Li+ under the optimal conditions. The experimental results are generally in agreement with the theoretical calculations.


Assuntos
Éteres de Coroa , Desenvolvimento Industrial , Íons , Lítio , Magnésio
2.
J Hazard Mater ; 393: 122378, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32120216

RESUMO

Thallium is an emerging pollutant reported in wastewater along with the increasing mining and smelting of thallium-containing ores in recent years. The complete removal of Tl(I) from wastewater is of significant emergency due to its high toxicity and mobility, however, Tl(I) removal is always confronted with numerous technical difficulties because of the extremely low Tl(I) concentration in wastewater and the disturbances of many accompanying impurity ions. Adsorption is currently the most widely used method for Tl(I) removal on industrial scale and varied kinds of adsorbents such as Prussian blue analogues, biosorbents, and metal oxides have been developed. However, the adsorption process of Tl(I) is always affected by the co-existing cations, resulting in low Tl(I) removal efficiency. Recently, the development of a variety of novel adsorbents or ion sensors based on macrocyclic compounds for enrichment and accurate determination of trace Tl(I) in aqueous solutions exhibits great potential for application in Tl(I) removal from wastewater with high selectivity and process efficiency. This paper provides an overview of the adsorption methods for Tl(I) removal from wastewater with emphasis on complexation properties between varied types of adsorbents and Tl(I). Future directions of research and development of adsorptive Tl(I) removal from industrial wastewater are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...