Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411415, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990843

RESUMO

Synthesis of fully fused π-conjugated cycloarenes embedded nonbenzenoid aromatics is challenging. In this work, the first example of four-membered ring-embedded cycloarene (MF2) was designed and synthesized in single-crystal form by macrocyclization and ring fusion strategies. For comparison, single bond-linked chiral macrocycle MS2 without two fused four-membered rings and its linear-shaped polycyclic benzenoid monomer L1 were also synthesized. The pronounced anti-aromaticity of four-membered rings significantly adjusts the electronic structures and photophysical properties of cycloarene, resulting in an enhancement of the photoluminescence quantum yield (PLQY) from 10.66% and 10.74% for L1 and MS2, respectively, to 54.05% for MF2, which is the highest PLQY among the reported cycloarenes. Notably, owing to the embedded four-membered rings that reduce structural displacements, MF2 exhibits an ultra-narrowband emission with a single-digit full-width at half-maximum (FWHM) of only 7 nm (0.038 eV), which sets a new record among all reported organic narrowband luminescent molecules, and represents the first example of ultra-narrowband emission in conventional polycyclic aromatic hydrocarbons (PAHs) devoid of heteroatoms.

2.
Angew Chem Int Ed Engl ; 63(24): e202403827, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38589299

RESUMO

Organic radicals with narrow energy gaps are highly sought-after for the production of near-infrared (NIR) fluorophores. However, the current repertoire of developed organic radicals is notably limited, facing challenges related to stability and low fluorescence efficiency. This study addresses these limitations by achieving stable radicals in nonconjugated poly(diphenylmethane) (PDPM). Notably, PDPM exhibits a well-balanced structural flexibility and rigidity, resulting in a robust intra-/inter-chain through-space conjugation (TSC). The stable radicals within PDPM, coupled with strong TSC, yield a remarkable full-spectrum emission spanning from blue to NIR beyond 900 nm. This extensive tunability is achieved through careful adjustments of concentration and excitation wavelength. The findings highlight the efficacy of polymerization in stabilizing radicals and introduce a novel approach for developing nonconjugated NIR emitters based on triphenylmethane subunits.

3.
Nat Commun ; 15(1): 366, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191597

RESUMO

Near-infrared luminophores have many advantages in advanced applications, especially for structures without π-conjugation aromatic rings. However, the fabrication of red clusteroluminogens from nonconjugated polymers is still a big challenge, let alone the near-infrared clusteroluminogens. Here, we develop nonconjugated luminophores with full-spectrum from blue to near-infrared light (470 ~ 780 nm), based on color phenomenon of nonconjugated polyesters synthesized from the amine-initiated copolymerization of epoxides and cyclic anhydrides. We reveal that amines act as initiators attached to polymer chain ends. The formation of various amine-ester complexes in polyesters induces red to near-infrared light, conceptually, amine-ester complexed clusteroluminescence via intra/inter-chain charge transfer. Significantly, emission colors can be easily tuned by the contents and types of amines, microstructures of polyesters, and their concentration. This work provides a low-cost, scalable platform and strategy for the production of high-efficiency, multicolor luminescent materials.

4.
Mater Horiz ; 11(6): 1579-1587, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38268396

RESUMO

Making nonconjugated polymers to emit visible light remains a formidable challenge, let alone near-infrared (NIR) light, although NIR luminophores have many advanced applications. Herein, we propose an electron-bridging strategy of using heteroatoms (O, N, and S) to achieve tunable emission from blue to NIR regions (440-800 nm) in nonconjugated polyesters. Especially, sulfur-containing polyester P4 exhibits NIR clusteroluminescence (CL) on changing either the concentration or excitation wavelength. Experimental characterization and theoretical calculation demonstrate that the introduction of heteroatoms significantly enhances the through-space interactions (TSIs) via the electron-bridging effect between heteroatoms and carbonyls. The strength of the electron-bridging effect follows the order of S > N > O, based on two synergistic effects: electronic structure and van der Waals radius of heteroatoms. This work provides a low-cost, scalable platform to produce new-generation nonconjugated luminophores with deeper insight into the photophysical mechanism.

5.
Angew Chem Int Ed Engl ; 63(8): e202318245, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38165147

RESUMO

The length and mode of conjugation directly affect the molecular electronic structure, which has been extensively studied in through-bond conjugation (TBC) systems. Corresponding research greatly promotes the development of TBC-based luminophores. However, how the length and mode of through-space conjugation (TSC), one kind of weak interaction, influence the photophysical properties of non-conjugated luminophores remains a relatively unexplored field. Here, we unveil a non-linear relationship between TSC length and emission characteristics in non-conjugated systems, in contrast to the reported proportional correlation in TBC systems. More specifically, oligo(phenylene methylene)s (OPM[4]-OPM[7]) exhibit stronger TSC and prominent blue clusteroluminescence (CL) (≈440 nm) compared to shorter counterparts (OPM[2] and OPM[3]). OPM[6] demonstrates the highest solid-state quantum yield (40 %), emphasizing the importance of balancing flexibility and rigidity. Further theoretical calculations confirmed that CL of these oligo(phenylene methylene)s was determined by stable TSC derived from the inner rigid Diphenylmethane (DPM) segments within the oligomers instead of the outer ones. This discovery challenges previous assumptions and adds a new dimension to the understanding of TSC-based luminophores in non-conjugated systems.

6.
J Am Chem Soc ; 145(38): 21104-21113, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37715315

RESUMO

The odd-even effect is a fantastic phenomenon in nature, which has been applied in diverse fields such as organic self-assembled monolayers and liquid crystals. Currently, the origin of each odd-even effect remains elusive, and all of the reported odd-even effects are related to the ground-state properties. Here, we discover an excited-state odd-even effect in the through-space interaction (TSI) of nonconjugated tetraphenylalkanes (TPAs). The TPAs with an even number of alkyl carbon atoms (C2-TPA, C4-TPA, and C6-TPA) show strong TSI, long-wavelength emission, and high QY. However, the odd ones (C1-TPA, C3-TPA, C5-TPA, and C7-TPA) are almost nonexistent with negligible QY. Systematically experimental and theoretical results reveal that the excited-state odd-even effect is synthetically determined by three factors: alkyl geometry, molecular movability, and intermolecular packing. Moreover, these flexible luminescent TPAs possess tremendous advantages in fluorescent information encryptions. This work extends the odd-even effect to photophysics, demonstrating its substantial importance and universality in nature.

7.
Biosens Bioelectron ; 236: 115405, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267689

RESUMO

Nowadays, synthesis of novel organic photosensitizer is imperative but challenging for photoelectrochemical (PEC) assay in analytical and biomedical fields. In this work, the PEC responses enhanced about 4.3 folds after in situ electrostatic assembly of 1-butyl-3-methylimidazole tetrafluoroborate ([BIm][BF4]) on meso-tetra (4-carboxyphenyl) porphine (TP), which was first covalently linked with NH2 modified indium tin oxide electrode ([BIm]+--TP-NH2-ITO). Moreover, the [BIm]+--TP-NH2-ITO showed a much larger photocurrent in a water/dimethyl sulfoxide (DMSO) binary solvent with a water fraction (fw) of 90%, which displayed 6.7-fold increase over that in pure DMSO, coupled by discussing the PEC enhanced mechanism in detail. Then, the PEC signals were sharply quenched via a competitive reaction between magnetic bead linked dsDNA (i.e., initial hybridization of aptamer DNA with linking DNA) and HCT-116 cells (closely associated with CRC), where the liberated L-DNA stripped the [BIm]+ from [BIm]+--TP-NH2-ITO. The PEC detection strategy exhibited a wider linear range (30 ∼ 3 × 105 cells mL-1) and a lower limit of detection (6 cells mL-1), achieving single-cell bioanalysis even in diluted human serum sample. The in situ assembly strategy offers a valuable biosensing platform to amplify the PEC signals with advanced organic photosensitizer for early diagnosis of tumors.


Assuntos
Técnicas Biossensoriais , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Eletricidade Estática , Dimetil Sulfóxido , Células HCT116 , DNA , Água
8.
Angew Chem Int Ed Engl ; 62(30): e202306762, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37249479

RESUMO

Clusteroluminescence (CL) and through-space interactions (TSIs) of non-conjugated molecules have drawn more attention due to their unique photophysical behaviors that are different from largely conjugated luminogens. However, achieving red and even near-infrared (NIR) emission from such systems is still challenging due to the intrinsic drawbacks of non-conjugated molecules and the lack of theories for structure-property relationships. In this work, six phenolic resins are designed and synthesized based on two molecule-engineering strategies: increasing the number of TSIs units and introducing electron-donating/-withdrawing groups. All phenolic resins are verified as luminogens with CL property (CLgens), and the first example of CLgens with NIR emission (maximum emission wavelength ≥680 nm) and high absolute quantum yield (47 %) is reported. Experiments and theoretical analysis reveal that two TSIs types, through-space locally excited state and through-space charge transfer state, play essential roles in achieving CL from these non-conjugated polymers, which could be manipulated via changing structural conformation and electron density or altering electron transition behaviors. This work not only provides an approach to manipulate TSIs and CL of non-conjugated polymers but also endows commercially available phenolic resins with high practical value as luminescence materials.

9.
Anal Chem ; 95(10): 4735-4743, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36852949

RESUMO

Nowadays, electrochemiluminescence (ECL) efficiency of an organic emitter is closely related with its potential applications in food safety and environmental monitoring fields. In this work, 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) was self-assembled to form hydrogen bond organic frameworks (HOFs), which worked as ideal reactors to generate highly active oxygen-containing radicals, followed by linking with isoluminol (ILu) via amide bond (termed ILu-HOFs). After covalent assembly with aminated indium-tin oxide electrode (labeled NH2-ITO), the ECL efficiency of the ILu-HOFs NH2-ITO showed about a 23.4-time increase over that of ILu itself in the presence of H2O2. Meanwhile, the enhanced ECL mechanism was mainly studied by electron paramagnetic resonance, theoretical calculation, and electrochemistry. On the above foundation, an aptamer "sandwich" ECL biosensor was constructed for detecting isocarbophos (ICP) via in situ elimination of H2O2 with catalase-linked palladium nanocubes (CAT-Pd NCs). The as-built sensor showed a broad linear range (1 pM to 100 nM) and a low limit of detection (LOD) down to 0.4 pM, coupled with efficient assays of ICP in lake water and cucumber juice samples. This strategy provides an effective way for the synthesis of advanced ECL emitter, coupled by showing promising applications in environmental and food analysis.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Ligação de Hidrogênio , Medições Luminescentes , Limite de Detecção , Eletrodos , Técnicas Eletroquímicas
10.
Chem Commun (Camb) ; 58(77): 10837-10840, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36069970

RESUMO

Restriction of intramolecular motions of AIEgens is greatly intensified by introducing dynamic metal coordination bonds to achieve dramatic fluorescence enhancement, which provides a simple and effective way to dramatically improve the emission efficiency of AIEgens. AIEgen-based metal complexes have an abnormal anti-heavy-atom effect, which contributes to their high emission efficiencies without changing their emission nature.


Assuntos
Complexos de Coordenação , Corantes Fluorescentes , Fluorescência , Corantes Fluorescentes/química
11.
Anal Chem ; 94(13): 5406-5414, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315662

RESUMO

Spatial and temporal monitoring of bioactive targets such as calcium ions is vitally significant for their essential roles in physiological and biochemical functions. Herein, we proposed an esterase-activated precipitating strategy to achieve highly specific identification and long-term bioimaging of calcium ions via lighting up the calcium ions by precipitation using a water-soluble aggregation-induced phosphorescence (AIP) probe. The designed probe CaP2 has an AIP behavior and can be efficiently aggregated by calcium ions through the coupling coordination of carboxylic acid and cyanide groups, which enables it to light up Ca2+ by precipitating-triggered phosphorescence. Four hydrophilic groups of tetraethylene glycol were introduced to endow the resulting probe CaP3 with extraordinary water solubility as well as excellent cellular penetration. Only when the probe CaP3 penetrates inside the live cells the existing esterase in cells can activate the probe to be transformed active CaP2 probe selectively binding with calcium ion in the surroundings. The probe was used to further evaluate the imaging of intracellular calcium ions in model organisms. The excellent imaging performance of CaP3 in Arabidopsis thaliana seedling roots demonstrates that CaP3 has the excellent capability of monitoring calcium ions in live-cell imaging, and furthermore CaP3 exhibits much better photostability and thereby greater potential in long-term imaging. This work established a general esterase-activated precipitating strategy to achieve specific detection and bioimaging in situ triggered by esterase in live cells, and established a water-soluble aggregation-induced phosphorescence probe with high selectivity to achieve specific sensing and long-term imaging of calcium ions in live cells.


Assuntos
Cálcio , Esterases , Diagnóstico por Imagem , Corantes Fluorescentes/química , Íons , Raízes de Plantas
12.
Anal Chem ; 94(9): 4048-4058, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35191676

RESUMO

Long-term in situ cell membrane-targeted bioimaging is of great significance for studying specific biological processes and functions, but currently developed membrane probes are rarely simultaneously used to image the plasma membrane of animal and plant cells, and these probes lack sufficiently high long-term targeting ability. Herein, we proposed an antipermeability strategy to achieve highly specific and long-term imaging of plasma membranes of both human and plant cells using the steric hindrance effect and restriction-induced emission of AIE-active probes based on an updated membrane model. A certain degree of rigidity of plasma membrane containing a large ratio of rigid cholesterol molecules in the updated membrane model provides a promising opportunity to design antipermeable probes by introducing a rigid steric hindrance group in the probe. The designed antipermeable probes can anchor inside plasma membrane for a long term relying on the combination of the steric hindrance effect and the electrostatic and hydrophobic interactions between the probe and the membrane, as well as light up the membrane via the restriction-induced emission mechanism. The excellent performance in imaging completeness and specificity for both human cells and plant cells clearly shows that these designed probes possess outstanding antipermeability to achieve long-term specific imaging of membrane. These probes also show some advanced features such as ultrafast staining, wash-free merit, favorable biocompatibility, good photostability, and effective resistance to viscosity and pH alteration. This work also provides a valuable design principle for membrane probes of plant cells that the designed probes require a suitable molecular size favoring the penetration of small pores of cell walls.


Assuntos
Diagnóstico por Imagem , Corantes Fluorescentes , Animais , Membrana Celular/química , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Coloração e Rotulagem
13.
Anal Chem ; 93(51): 17110-17118, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34913694

RESUMO

Nowadays, continuous efforts have been devoted to searching highly efficient electrochemiluminescence (ECL) emitters for applications in clinical diagnosis and food safety. In this work, triazinyl-based hydrogen bond organic frameworks (Tr-HOFs) were synthesized by N···H hydrogen bond self-assembly aggregation, where 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (phenyDAT) was prepared via the cyclization reaction and behaved as a novel ligand. Impressively, the resulting Tr-HOFs showed strong ECL responses with highly enhanced ECL efficiency (21.3%) relative to the Ru(bpy)32+ standard, while phenyDAT hardly showed any ECL emission in aqueous phase. The Tr-HOFs innovatively worked as a new ECL luminophore to construct a label-free biosensor for assay of kanamycin (Kana). Specifically, the ECL response greatly weakened upon assembly of captured DNA with ferrocene (cDNA-Fc) onto the Tr-HOFs-modified electrode, while the ECL signals were adversely recovered by releasing linked DNA (L-DNA) from double-stranded DNA (dsDNA, hybridization of aptamer DNA (aptDNA) with L-DNA) due to the specific recognition of Kana with the aptDNA combined by the linkage of L-DNA and cDNA-Fc on the electrode. The as-built sensor showed a broadened linear range (1 nM-10 µM) and a limit of detection (LOD) down to 0.28 nM, which also displayed satisfactory results in the analysis of Kana in the milk and diluted human serum samples. This work offers a novel pathway to design an ECL emitter with organic molecules, holding great promise in biomedical analysis and food detection.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Humanos , Ligação de Hidrogênio , Limite de Detecção , Medições Luminescentes
14.
Chem Sci ; 12(32): 10710-10723, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476056

RESUMO

It is extremely challenging but desirable to regulate the photophysical and photochemical processes of aggregation-induced emission luminogens (AIEgens) in distinct states in a controllable manner. Herein, we design two groups of AIEgens based on a triphenylacrylonitrile (TPAN) skeleton with through-space conjugation (TSC) property, demonstrate controlled regulation of photophysical emission efficiency/color and photochemical photochromic and photoactivatable fluorescence behaviours of these compounds, and further validate design principles to achieve highly efficient and emission-tuning AIEgens and to accomplish photo-dependent color switches and fluorescence changes. It is surprisingly found that the introduction of heavy halogens like bromine into a TPAN skeleton dramatically enhances the emission efficiency, and such an abnormal phenomenon against the heavy-atom effect is attributed to the specific through-space conjugation nature of the AIE-active skeleton, effective intermolecular halogen-bond-induced restriction of intramolecular motions, and heavy atom-induced vibration reduction. The incorporation of two electron-donating amino groups into the TPAN skeleton cause the luminogens to undergo a bathochromic shifted emission due to the formation of a D-A pattern. Apart from the regulation of photophysical processes in the solid state, the construction of the D-A pattern in luminogens also results in extremely different photochemical reactions accompanying reversible/irreversible photochromism and photoactivatable fluorescence phenomena in a dispersed state. It is revealed that photo-triggered cyclization and decyclization reactions dominantly contribute to reversible photochromism of the TPAN family, and the photo-induced cyclization-dehydrogenation reaction is responsible for the irreversible color changes and photoactivatable fluorescence behaviours of the NTPAN family. The demonstrations of multiple-mode signaling in photoswitchable patterning and information encryption highlight the importance of controlled regulation of photophysics and photochemistry of fused chromic and AIE-active luminogens in distinct states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...