Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739229

RESUMO

To discover new Werner (WRN) helicase inhibitors, a series of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives were designed and synthesized through a structural optimization strategy, and the anticancer activities of 25 new target compounds against PC3, K562, and HeLa cell lines were evaluated by the MTT assay. Some of these compounds exhibited excellent inhibitory activity against three different cancer cell lines. Compounds 6a, 8i, and 13a showed better antiproliferative activity against K562 cells, with IC50 values of 3871.5, 613.6 and 134.7 nM, respectively, than did paclitaxel (35.6 nM), doxorubicin (2689.0 nM), and NSC 617145 (20.3 nM). To further verify whether the antiproliferative activity of these compounds is dependent on WRN, PC3 cells overexpressing WRN (PC3-WRN) were constructed to further study their antiproliferative potency in vitro, and the inhibition ratio and IC20 values showed that compounds 6a, 8i, and 13a were more sensitive to PC3-WRN than were the control group cells (PC3-NC). The IC20 ratios of compounds 6a, 8i, and 13a to PC3-NC and PC3-WRN were 94.3, 153.4 and 505.5, respectively. According to the docking results, the compounds 6a, 8i, and 13a overlapped well with the binding pocket of 6YHR. Further study demonstrated that among the tested compounds, 13a was the most sensitive to PC3-WRN. In summary, our research identified a series of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives as potential WRN-dependent anticancer agents.

2.
Chem Biodivers ; 21(5): e202301776, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602834

RESUMO

A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98 µM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.


Assuntos
Antineoplásicos , Apoptose , Movimento Celular , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Quinazolinas , Humanos , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estrutura Molecular , Relação Dose-Resposta a Droga , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
3.
Bioorg Med Chem ; 102: 117660, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442524

RESUMO

Werner (WRN) syndrome protein is a multifunctional enzyme with helicase, ATPase, and exonuclease activities that are necessary for numerous DNA-related transactions in the human cell. Recent studies identified WRN as a synthetic lethal target in cancers. In this study, a series of new N-arylquinazoline-4-amine analogs were designed and synthesized based on structure optimization of quinazoline. The structures of the thirty-two newly synthesized compounds were confirmed by 1H NMR, 13C NMR and ESI-MS. The anticancer activity in vitro against chronic myeloid leukemia cells (K562), non-small cell lung cancer cells (A549), human prostate cancer cells (PC3), and cervical cancer cells (HeLa) of the target compounds was evaluated. Among them, the inhibition ratio of compounds 17d, 18a, 18b, 11 and 23a against four cancer cells at 5 µM concentration were more than 50 %. The IC50 values of compounds 18a and 18b were 0.3 ± 0.01 µM and 0.05 ± 0.02 µM in K562 cells respectively, compared with HeLa and A549 cells, 18a and 18b were more sensitive to K562 cells. In addition, the PC3 cells with WRN overexpression (PC3-WRN) was constructed, 18a and 18b and 23a were more sensitive to PC3-WRN cells compared with the control group cells (PC3-NC). Then, the cell viability of the novel WRN inhibitors were further assessed by colony formation assay. Compared with PC3-NC cells, 18b and 23a had obvious inhibitory effect on PC3-WRN cell at 1000 nM. In summary, these results indicated that the compounds 18b and 23a could be WRN protein inhibitor with potent anticancer properties in vitro.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RecQ Helicases , Exodesoxirribonucleases/metabolismo , Células HeLa
4.
Eur J Pharm Sci ; 194: 106706, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244809

RESUMO

Cervical cancer is the leading cause of death among gynecological malignant tumors, especially due to the poor prognosis of patients with advanced tumors due to recurrence, metastasis, and chemotherapy resistance. Therefore, exploring new antineoplastic drugs with high efficacy and low toxicity may bring new expectations in patients with cervical cancer. Natural products and their derivatives exert an antitumor activity. Therefore, in this work, combined with network pharmacology analysis and experimental validation, we investigated the anti-cervical cancer activity and molecular mechanism of a new trifluoromethyl quinoline (FKL) derivative in vivo and in vitro. FKL117 inhibited the proliferation of cervical cancer cells in a dose and time-dependent manner, induced apoptosis in HeLa cells, arrested the cell cycle in the G2/M phase, and regulated the expression of the apoptotic and cell cycle-related proteins Bcl-2, Bax, cyclin B1, and CDC2. We used online databases to obtain HDAC1 as one of the possible targets of FKL117 and the target binding and binding affinity were modeled by molecular docking. The results showed that FKL117 formed a hydrogen bond with HDAC1 and had good binding ability. We found that FKL117 targeted to inhibit the expression and function of HDAC1 and increased the acetylation of histone H3 and H4, which was also confirmed in vivo. The migration of HMGB1 from the nucleus to the cytoplasm further verified the above results. In conclusion, our study suggested that FKL117 might be used as a novel candidate for targeting the inhibition of HDAC1 against cervical cancer.


Assuntos
Quinolinas , Neoplasias do Colo do Útero , Feminino , Humanos , Histonas/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Células HeLa , Acetilação , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Apoptose , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Proliferação de Células , Histona Desacetilase 1/metabolismo
5.
Eur J Pharm Sci ; 192: 106660, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052256

RESUMO

A series of novel prenylated chalcone derivatives with broad spectrum anticancer potential were designed and synthesized. Some of the synthesized target compounds showed potent anti-proliferative activities toward LNCaP (prostate cancer cell line), K562 (human leukemia cells), A549 (human lung carcinoma cell line) and HeLa (cervical cancer cell line) cell lines. Among of the active compounds, (E)-1-(4-(2-(diethylamino)ethoxy)-2-hydroxy-6-methoxy-3-(3-methylbut-2-en-1-yl)phenyl)-3-(pyridin-3-yl)prop-2-en-1-one (C36) was directly interacted with protein kinase B (PKB), also known as AKT, significantly inhibited the pPI3K, pAKT(Ser473) protein levels to repress the growth of cancer cells by inducing apoptosis, arresting cell cycle. Our studies provide support for prenylated chalcone derivatives potential applications in cancer treatment as a potential AKT inhibitor.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Humanos , Chalconas/farmacologia , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proliferação de Células , Chalcona/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958505

RESUMO

Arsenic is a carcinogenic metalloid toxicant widely found in the natural environment. Acute or prolonged exposure to arsenic causes a series of damages to the organs, mainly the liver, such as hepatomegaly, liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Therefore, it is imperative to seek drugs to prevent arsenic-induced liver injury. Quinazolines are a class of nitrogen heterocyclic compounds with biological and pharmacological effects in vivo and in vitro. This study was designed to investigate the ameliorating effects of quinazoline derivatives on arsenic-induced liver injury and its molecular mechanism. We investigated the mechanism of the quinazoline derivative KZL-047 in preventing and ameliorating arsenic-induced liver injury in vitro by cell cycle and apoptosis. We performed real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting combined with molecular docking. In vivo, the experiments were performed to investigate the mechanism of KZL-047 in preventing and ameliorating arsenic-induced liver injury using arsenic-infected mice. Physiological and biochemical indices of liver function in mouse serum were measured, histopathological changes in liver tissue were observed, and immunohistochemical staining was used to detect changes in the expression of RecQ-family helicases in mouse liver tissue. The results of in vitro experiments showed that sodium arsenite (SA) inhibited the proliferation of L-02 cells, induced apoptosis, blocked the cell cycle at the G1 phase, and decreased the expression of RecQ family helicase; after KZL-047 treatment in arsenic-induced L-02 cells, the expression of RecQ family helicase was upregulated, and the apoptosis rate was slowed, leading to the restoration of the cell viability level. KZL-047 inhibited arsenic-induced oxidative stress, alleviated oxidative damage and lipid peroxidation in vivo, and ameliorated arsenic toxicity-induced liver injury. KZL-047 restored the expression of RecQ family helicase proteins, which is consistent with the results of in vitro studies. In summary, KZL-047 can be considered a potential candidate for the treatment of arsenic-induced liver injury.


Assuntos
Arsênio , Arsenitos , Doença Hepática Crônica Induzida por Substâncias e Drogas , Camundongos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , RecQ Helicases/metabolismo , Quinazolinas/farmacologia , Quinazolinas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Simulação de Acoplamento Molecular , Fígado/metabolismo , Estresse Oxidativo , Cirrose Hepática/metabolismo , Arsenitos/toxicidade
7.
Future Med Chem ; 15(21): 1967-1986, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37937524

RESUMO

Aim: A series of novel trifluoromethylquinoline derivatives were designed, synthesized and evaluated for antitumor activities. Methodology: All compounds were evaluated for antiproliferative activity against four human cancer cell lines. Results: Among them, 5a, 5m, 5o and 6b exhibited remarkable antiproliferative activities against all the tested cell lines at nanomolar concentrations. Mechanism of action studies demonstrated that 6b targeted the colchicine binding site, potentially inhibiting tubulin polymerization, and further studies indicated that 6b could arrest LNCaP cells in the G2/M phase and induce cell apoptosis. Molecular docking confirmed that 6b could bind to the colchicine binding site. Conclusion: Results suggested that 6b could serve as a promising lead compound for the development of novel tubulin polymerization inhibitors and cancer therapy.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Simulação de Acoplamento Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Relação Estrutura-Atividade , Polimerização
8.
Bioorg Chem ; 139: 106727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451147

RESUMO

In this work, a series of 2-(trifluoromethyl)quinolin-4-amine derivatives were designed and synthesized through structural optimization strategy as a microtubule-targeted agents (MTAs) and their cytotoxicity activity against PC3, K562 and HeLa cell lines were evaluated. The half maximal inhibitory concentration (IC50) of 5e, 5f, and 5o suggested that their potency of anti-proliferative activities against HeLa cell lines were better than the combretastatin A-4. Compound 5e showed the higher anti-proliferative activity against PC3, K562 and HeLa in vitro with IC50 values of 0.49 µM, 0.08 µM and 0.01 µM, respectively. Further mechanism study indicated that the representative compound 5e was new class of tubulin inhibitors by EBI competition assay and tubulin polymerization assays, it is similar to colchicine. Immunofluorescence staining revealed that compound 5e apparently disrupted tubulin network in HeLa cells, and compound 5e arrested HeLa cells at the G2/M phase and induced cells apoptosis in a dose-dependent manner. Molecular docking results illustrated that the hydrogen bonds of represented compounds reinforced the interactions in the pocket of colchicine binding site. Preliminary results suggested that 5e deserves further research as a promising tubulin inhibitor for the development of anticancer agents.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Estrutura Molecular , Células HeLa , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Polimerização , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Microtúbulos/metabolismo , Colchicina/metabolismo
9.
Eur J Med Chem ; 256: 115470, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37201429

RESUMO

A series of new N-aryl-2-trifluoromethylquinazoline-4-amine analogs were designed and synthesized based on structure optimization of quinazoline by introducing a trifluoromethyl group into 2-position. The structures of the twenty-four newly synthesized compounds were confirmed by 1H NMR, 13C NMR and ESI-MS. The in vitro anti-cancer activity against chronic myeloid leukemia cells (K562), erythroleukemia cells (HEL), human prostate cancer cells (LNCaP), and cervical cancer cells (HeLa) of the target compounds was evaluated. Among them, compounds 15d, 15f, 15h, and 15i showed the significantly (P < 0.01) stronger growth inhibitory activity on K562 than those of the positive controls of paclitaxel and colchicine, while compounds 15a, 15d, 15e, and 15h displayed significantly stronger growth inhibitory activity on HEL than those of the positive controls. However, all the target compounds exhibited weaker growth inhibition activity against K562 and HeLa than those of the positive controls. The selectivity ratio of compounds 15h, 15d, and 15i were significantly higher than those of other active compounds, indicating that these three compounds had the lower hepatotoxicity. Several compounds displayed strong inhibition against leukemia cells. They inhibited tubulin polymerization, disrupted cellular microtubule networks by targeting the colchicine site, and promoted cell cycle arrest of leukemia cells at G2/M phase and cell apoptosis, as well as inhibiting angiogenesis. In summary, our research provided that novel synthesized N-aryl-2-trifluoromethyl-quinazoline-4-amine active derivatives as the inhibitors of tubulin polymerization in leukemia cells, which might be a valuable lead compounds for anti-leukemia agents.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Relação Estrutura-Atividade , Polimerização , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Colchicina/farmacologia , Linhagem Celular Tumoral
10.
Biomed Pharmacother ; 160: 114360, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804121

RESUMO

In the present study, a series of novel L-phenylalanine dipeptides were designed and synthesized by a multi-step sequence of reactions, including carbodiimide-mediated condensation, hydrolysis, mixed anhydride condensation, and nucleophilic substitution. Among them, compound 7c exhibited potent antitumor activity against prostate cancer cell PC3 in vitro and in vivo via inducing apoptosis. We investigated the significantly differentially expressed proteins in the cells caused by the compound 7c to unravel the molecular mechanisms underlying the regulation of PCa cell growth, which indicated that 7c mainly regulated the protein expression of apoptosis-related transcription factors, including c-Jun, IL6, LAMB3, OSMR, STC1, OLR1, SDC4 and PLAU; and 7c also regulated the protein expression of inflammatory cytokines including IL6, CXCL8, TNFSF9, TNFRSF12A and OSMR, and the phosphorylation levels of RelA. The action target confirmed that TNFSF9 protein is the critical binding target of 7c. These findings suggested that 7c could regulate the apoptosis and inflammatory response related signaling pathways for the inhibition of the proliferation of PC3 cells, implying that 7c could be considered a promising therapeutic candidate for PCa therapy.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Fenilalanina/farmacologia , Fenilalanina/uso terapêutico , Interleucina-6 , Neoplasias da Próstata/patologia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Ligante 4-1BB
11.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142828

RESUMO

Prostate cancer (PCa) is a common malignant cancer of the urinary system. Drug therapy, chemotherapy, and radical prostatectomy are the primary treatment methods, but drug resistance and postoperative recurrence often occur. Therefore, seeking novel anti-tumor compounds with high efficiency and low toxicity from natural products can produce a new tumor treatment method. Matijin-Su [N-(N-benzoyl-L-phenylalanyl)-O-acetyl-L-phenylalanol, MTS] is a phenylalanine dipeptide monomer compound that is isolated from the Chinese ethnic medicine Matijin (Dichondra repens Forst.). Its derivatives exhibit various pharmacological activities, especially anti-tumor. Among them, the novel MTS derivative HXL131 has a significant inhibitory effect against prostate tumor growth and metastasis. This study is designed to investigate the effects of HXL131 on the growth and metastasis of human PCa cell lines PC3 and its molecular mechanism through in vitro experiments combined with proteomics, molecular docking, and gene silencing. The in vitro results showed that HXL131 concentration dependently inhibited PC3 cell proliferation, induced apoptosis, arrested cell cycle at the G2/M phase, and inhibited cell migration capacity. A proteomic analysis and a Western blot showed that HXL131 up-regulated the expression of proliferation, apoptosis, cell cycle, and migration-related proteins CYR61, TIMP1, SOD2, IL6, SERPINE2, DUSP1, TNFSF9, OSMR, TNFRSF10D, and TNFRSF12A. Molecular docking, a cellular thermal shift assay (CETSA), and gene silencing showed that HXL131 had a strong binding affinity with DUSP1 and TNFSF9, which are important target genes for inhibiting the growth and metastasis of PC3 cells. This study demonstrates that HXL131 exhibited excellent anti-prostate cancer activity and inhibited the growth and metastasis of prostate cancer cells by regulating the expression of DUSP1 and TNFSF9.


Assuntos
Produtos Biológicos , Neoplasias da Próstata , Ligante 4-1BB , Apoptose , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Fosfatase 1 de Especificidade Dupla/genética , Humanos , Interleucina-6/farmacologia , Masculino , Simulação de Acoplamento Molecular , Fenilalanina/farmacologia , Neoplasias da Próstata/metabolismo , Proteômica , Serpina E2/farmacologia
12.
ACS Omega ; 6(46): 31093-31098, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841151

RESUMO

A new class of trifluoromethylpyridine 1,3,4-oxadiazole derivatives (6a-6v) was obtained, and their antibacterial activities were evaluated. Some of them exhibited good activity, particularly 6a, which had the highest in vitro activity against Ralstonia solanacearum (R. solanacearum) and Xanthomonas axonopodis pv. citri (Xac). The half-maximal effective concentrations (EC50) were 26.2 and 10.11 µg/mL, respectively, which were lower than those of commercial thiodiazole copper (97.2 and 35.3 µg/mL, respectively). Furthermore, 6q showed much higher activity against Xanthomonas oryzae pv. oryzae (Xoo) with an EC50 value of 7.2 µg/mL; this was superior to bismerthiazol (57.2 µg/mL). Collectively, our findings provide a foundation for the development of trifluoromethylpyridine 1,3,4-oxadiazole derivatives.

13.
Aging (Albany NY) ; 12(10): 9103-9124, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427575

RESUMO

Although androgen deprivation therapy may initially be effective in prostate cancer, the disease can gradually progress to castration-resistant prostate cancer, at which point chemotherapy becomes the major clinical strategy. In this study, we demonstrated the anti-cancer potential of a novel 3',5'-diprenylated chalcone (C10), which selectively inhibited the proliferation of PC3 cells in vitro and in vivo. C10 treatment elevated the proportion of PC3 cells in sub-G1 phase and induced programmed cell death. Interestingly, C10 elicited concurrent Caspase-dependent apoptotic and gasdermin E-dependent pyroptotic events. RNA-Seq and bioinformatics analyses revealed a strong correlation between protein kinase C delta (PKCδ) and mitogen-activated protein kinase pathway activation in prostate cancer. PKCδ silencing in PC3 cells suppressed the activation of the JNK pathway and the expression of its downstream genes, including Bax, interleukin-6 and interleukin-1ß, which are involved in apoptotic and pyroptotic processes. Moreover, in PC3 cell xenograft tumor tissues, C10 treatment inhibited tumor growth and upregulated PKCδ. These findings suggest that C10 treatment induces the PKCδ/JNK pathway, thereby activating Caspase-3 and inducing the cleavage of PARP and gasdermin E to execute apoptosis and cell-lytic pyroptosis in prostate cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Proteína Quinase C-delta/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase 4/metabolismo , Masculino , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
14.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210104

RESUMO

The friend leukemia integration 1 (Fli-1) gene is involved in the expression control of key genes in multiple pathogenic/physiological processes, including cell growth, differentiation, and apoptosis; this implies that Fli-1 is a strong candidate for drug development. In our previous study, a 3',5'-diprenylated chalcone, (E)-1-(2-hydroxy-4-methoxy-3,5-diprenyl) phenyl-3-(3-pyridinyl)-propene-1-one (C10), was identified as a novel anti-prostate cancer (PCa) agent. Here, we investigated the molecular mechanisms underlying the anti-cancer effects of C10 on the growth, metastasis, and invasion of PC3 cells in vitro. Our results show that C10 exhibited a strong inhibitory effect on proliferation and metastasis of PC3 cells via several cellular and flow cytometric analyses. Further mechanism studies revealed that C10 likely serves as an Fli-1 agonist for regulating the expression of Fli-1 target genes including phosphatidylinositol 3-kinase (P110), murine double minute2 (MDM2), B-cell lymphoma-2 (Bcl-2), Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP-1), and globin transcription factor-1 (Gata-1) as well as the phosphorylation of extracellular-regulated protein kinases 1 (ERK1). Further, we confirmed that C10 can regulate the expressions of vascular endothelial growth factor 1 (VEGF-1), transforming growth factor-ß2 (TGF-ß2), intercellular cell adhesion molecule-1 (ICAM-1), p53, and matrix metalloproteinase 1 (MMP-1) genes associated with tumor apoptosis, migration, and invasion. Thus, C10 exhibits stronger anticancer activity with novel molecular targets and regulatory molecular mechanisms, indicating its great potency for development as a novel targeted anticancer drug.


Assuntos
Chalconas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Humanos , Masculino , Modelos Biológicos , Neoplasias da Próstata/patologia , Ligação Proteica , Proteína Proto-Oncogênica c-fli-1/química , Transdução de Sinais/efeitos dos fármacos
15.
Biomed Pharmacother ; 106: 794-804, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29990873

RESUMO

Leukemia is a hematologic malignancy with poor prognosis in humans and chemotherapy is the main strategy for treating leukemia patients. Novel drugs with better selectivity and lower toxicity are required for the treatment of patients. A novel 3',5'-diprenylated chalcone, (E)-1-(2-hydroxy-4-methoxy-3,5-diprenyl) phenyl-3-(3- pyridinyl)-propene-1-one (C10) is a potential new anti-leukemia agent. In this study, we investigated the molecular mechanisms of the anti-leukemia effects of C10 on different leukemia cells in vitro. C10 showed strong inhibition of proliferation of the human erythroleukemia cell line HEL and human myeloid leukemia cell line K562, and several cell and flow cytometer assays showed that inhibition by C10 was due to the regulation of gene expression or phosphorylation in the apoptosis and autophagy pathways. The results showed that C10 regulated the expression of Bax, c-Myc, Bcl-2, P38/AMPK and ERK 1/2, activated the expression of Caspase-3, -8, and PARP at the protein level in the apoptosis pathway of the two leukemia cell types, and inhibited the expression of erythroleukemia carcinogene Fli-1 in the human erythroleukemia cell line HEL. Additionally,treatment with the compound induced a time-dependent increase in expression of LC 3A/B via inhibiting the AKT-mTOR pathway, which is associated with cell autophagy. Taken together, the above results suggest that the novel synthesized 3',5'-diprenylated chalcone can prevent the growth of leukemia cells by inducing apoptosis and autophagy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Chalconas/farmacologia , Leucemia Eritroblástica Aguda/tratamento farmacológico , Antineoplásicos/síntese química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Regulação Leucêmica da Expressão Gênica , Humanos , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/patologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
16.
Eur J Med Chem ; 133: 227-239, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28390228

RESUMO

A double Claisen rearrangements synthetic strategy was established for the total synthesis of 4,4'-dimethyl medicagenin (compound 6c). A series of its analogs also were prepared, including two novel 3',5'-diprenylated chalcones, in which ring B was replaced by azaheterocycle. The structures of the twenty-two newly synthesized compounds were confirmed by 1H NMR, 13C NMR and ESI-MS. In vitro, the cytotoxicity of the target compounds was evaluated using cancer cells. Noticeably, compound 10 exhibited broad-spectrum cytotoxicity on PC3 prostate cancer cells, MDA-MB-231 breast cancer cells (MDA), HEL and K562 erythroleukemia cells with IC50 values of 2.92, 3.14, 1.85 and 2.64 µM, respectively. Further studies indicated that compound 10 induced apoptosis and arrested the cell cycle phase of the above mentioned four cancer cell lines. By contrast, compound 6g selectively displayed potent inhibitory activity against the proliferation of HEL cells with an IC50 value of 4.35 µM. Compound 6g slightly induced apoptosis and arrested cell cycle phase of HEL cells. Preliminary structure-activity relationship studies indicated that, in all cancer cell lines evaluated, the 3-pyridinyl group was essential for cytotoxicity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Chalconas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Prenilação , Relação Estrutura-Atividade
17.
Chem Biodivers ; 13(11): 1584-1592, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27451105

RESUMO

A series of Matijin-Su (MTS, (2S)-2-{[(2S)-2-benzamido-3-phenylpropanoyl]amino}-3-phenylpropyl acetate) derivatives were synthesized and evaluated for their anti-HBV and cytotoxic activities in vitro. Six compounds (4g, 4j, 5c, 5g, 5h and 5i) showed significant inhibition against HBV DNA replication with the IC50 values in range of 2.18 - 8.55 µm, which were much lower than that of positive control lamivudine (IC50 82.42 µm). In particular, compounds 5h (IC50 2.18 µm; SI 151.59) and 5j (IC50 5.65 µm; SI 51.16) displayed relatively low cytotoxicities, resulting in high SI values. Notably, besides the anti-HBV DNA replication activity, compound 4j also exhibited more potent in vitro cytotoxic activity than 5-fluorouracil in two hepatocellular carcinoma cell (HCC) lines (QGY-7701 and SMMC-7721), indicating that 4j may be a promising lead for the exploration of drugs with dual therapeutic effects on HBV infection and HBV-induced HCC.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Dipeptídeos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/síntese química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Relação Estrutura-Atividade
18.
J Med Chem ; 59(12): 5721-39, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27213819

RESUMO

In this paper, a series of novel 4-substituted coumarin derivatives were synthesized. Among these compounds 34, 39, 40, 43, 62, 65, and 67 exhibited significant antiproliferative activity toward a panel of tumor cell lines at subnanomolar IC50 values. Compound 65 showed potent antiproliferative ability (IC50 values of 7-47 nM) and retained full activity in multidrug resistant cancer cells. Compound 65 caused G2/M phase arrest and interacted with the colchicine-binding site in tubulin, as confirmed by immune-fluorescence staining, microtubule dynamics assays, and competition assays with N,N'-ethylene-bis(iodoacetamide). Compound 65 reduced the cell migration and disrupted capillary-like tube formation in HUVEC cells. Importantly, compound 65 significantly and dose-dependently reduced tumor growth in four xenografts models including paclitaxel sensitive and resistant ovarian tumors (A2780s and A2780/T), adrmicycin sensitive and resistant breast tumors (MCF-7 and MCF-7/ADR), suggesting that compound 65 is a promising novel antimitotic compound for the potential treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Desenho de Fármacos , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Células Tumorais Cultivadas , Cicatrização/efeitos dos fármacos
19.
Chemistry ; 21(29): 10513-21, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26096911

RESUMO

Sugar function, structure and dynamics are intricately correlated. Ring flexibility is intrinsically related to biological activity; actually plasticity in L-iduronic rings modulates their interactions with biological receptors. However, the access to the experimental values of the energy barriers and free-energy difference for conformer interconversion in water solution has been elusive. Here, a new generation of fluorine-containing glycomimetics is presented. We have applied a combination of organic synthesis, NMR spectroscopy and computational methods to investigate the conformational behaviour of idose- and glucose-like rings. We have used low-temperature NMR spectroscopic experiments to slow down the conformational exchange of the idose-like rings. Under these conditions, the exchange rate becomes slow in the (19) F NMR spectroscopic chemical shift timescale and allows shedding light on the thermodynamic and kinetic features of the equilibrium. Despite the minimal structural differences between these compounds, a remarkable difference in their dynamic behaviour indeed occurs. The importance of introducing fluorine atoms in these sugars mimics is also highlighted. Only the use of (19) F NMR spectroscopic experiments has permitted the unveiling of key features of the conformational equilibrium that would have otherwise remained unobserved.


Assuntos
Fatores Biológicos/química , Flúor/química , Hexoses/química , Hexoses/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Termodinâmica
20.
Angew Chem Int Ed Engl ; 53(36): 9597-602, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25044775

RESUMO

Molecular mimicry is an essential part of the development of drugs and molecular probes. In the chemical glycobiology field, although many glycomimetics have been developed in the past years, it has been considered that many failures in their use are related to the lack of the anomeric effects in these analogues. Additionally, the origin of the anomeric effects is still the subject of virulent scientific debates. Herein, by combining chemical synthesis, NMR methods, and theoretical calculations, we show that it is possible to restore the anomeric effect for an acetal when replacing one of the oxygen atoms by a CF2 group. This result provides key findings in chemical sciences. On the one hand, it strongly suggests the key relevance of the stereoelectronic component of the anomeric effect. On the other hand, the CF2 analogue adopts the natural glycoside conformation, which might provide new avenues for sugar-based drug design.


Assuntos
Dissacarídeos/síntese química , Acetais/química , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mimetismo Molecular , Oxigênio/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...