Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cryobiology ; 114: 104860, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340888

RESUMO

During the freeze-thaw process, human spermatozoa are susceptible to oxidative stress, which may cause cryodamage and reduce sperm quality. As a novel mitochondria-targeted antioxidant, Mito-tempo has been used for sperm cryopreservation. However, it is currently unknown what role it will play in the process of sperm ultra-rapid freezing. The purpose of this study was to investigate whether Mito-tempo can improve sperm quality during ultra-rapid freezing. In this study, samples with the addition of Mito-tempo (0, 5, 10, 20, and 40 µM) to sperm freezing medium were selected to evaluate the changes in sperm quality, antioxidant capacity and ultrastructure after ultra-rapid freezing. After ultra-rapid freezing, the quality and antioxidant function of the spermatozoa were significantly reduced and the spermatozoa ultrastructure was destroyed. The addition of 10 µM Mito-tempo significantly increased post thaw sperm motility, viability, plasma membrane integrity and mitochondrial membrane potential (P < 0.05). Moreover, the DNA fragmentation index (DFI), ROS levels and MDA content were reduced, and the antioxidant enzyme (CAT and SOD) activities were enhanced in the 10 µM Mito-tempo group (P < 0.05). Moreover, Mito-tempo protected sperm ultrastructure from damage. In conclusion, Mito-tempo improved the quality and antioxidant function of sperm after ultra-rapid freezing while reducing freezing-induced ultrastructural damage.


Assuntos
Antioxidantes , Preservação do Sêmen , Masculino , Humanos , Antioxidantes/farmacologia , Congelamento , Criopreservação/métodos , Motilidade dos Espermatozoides , Crioprotetores/farmacologia , Sêmen , Espermatozoides , Mitocôndrias
2.
Free Radic Biol Med ; 204: 313-324, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201634

RESUMO

Aristolochic acids are widely distributed in the plants of Aristolochiaceae family and Asarum species. Aristolochic acid I (AAI) is the most frequent compound of aristolochic acids, which can accumulate in the soil, and then contaminates crops and water and enters the human body. Research has shown that AAI affects the reproductive system. However, the mechanism of AAI's effects on the ovaries at the tissue level still needs to be clarified. In this research, we found AAI exposure reduced the body and ovarian growth in mice, decreased the ovarian coefficient, prevented follicular development, and increased atretic follicles. Further experiments showed that AAI upregulated nuclear factor-κB and tumor necrosis factor-α expression, activated the NOD-like receptor protein 3 inflammasome, and led to ovarian inflammation and fibrosis. AAI also affected mitochondrial complex function and the balance between mitochondrial fusion and division. Metabolomic results also showed ovarian inflammation and mitochondrial dysfunction due to AAI exposure. These disruptions reduced the oocyte developmental potential by forming abnormal microtubule organizing centers and expressing abnormal BubR1 to destroy spindle assembly. In summary, AAI exposure triggers ovarian inflammation and fibrosis, affecting the oocyte developmental potential.


Assuntos
Ácidos Aristolóquicos , Inflamassomos , Humanos , Camundongos , Animais , Inflamassomos/genética , Ácidos Aristolóquicos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Homeostase , Mitocôndrias/metabolismo , Fibrose , Inflamação
3.
Food Chem Toxicol ; 176: 113736, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940772

RESUMO

Chloroacetonitrile (CAN) is a halogenated acetonitrile often produced while disinfecting drinking water. Previous studies have shown that maternal exposure to CAN interferes with fetal development; however, the adverse effects on maternal oocytes remain unknown. In this study, in vitro exposure of mouse oocytes to CAN reduced maturation significantly. Transcriptomics analysis showed that CAN altered the expression of multiple oocyte genes, especially those associated with the protein folding process. CAN exposure induced reactive oxygen species production, accompanied by endoplasmic reticulum (ER) stress and increased glucose regulated protein 78, C/EBP homologous protein and activating transcription factor 6 expression. Moreover, our results indicated that spindle morphology was impaired after CAN exposure. CAN disrupted polo-like kinase 1, pericentrin and p-Aurora A distribution, which may be an origin inducer that disrupts spindle assemble. Furthermore, exposure to CAN in vivo impaired follicular development. Taken together, our findings indicate that CAN exposure induces ER stress and affects spindle assembly in mouse oocytes.


Assuntos
Estresse do Retículo Endoplasmático , Oócitos , Feminino , Camundongos , Animais , Acetonitrilas , Ciclo Celular
4.
Cryobiology ; 111: 49-56, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36642193

RESUMO

MnTBAP is a new synthetic antioxidant that has been used for the cryopreservation of sperm. However, the exact mechanism of its cryoprotection at the molecular level is largely unknown. Therefore, in this study, normal human semen samples were selected and MnTBAP (0, 5, 10, 20, 40 µM) was added to sperm freezing medium to assess changes in kinetics parameters, apoptosis, reactive oxygen species (ROS), and DNA fragmentation index (DFI) after sperm ultra-rapid freezing. The tandem masstagging (TMT) proteomics technique was used to further investigate the changes in proteins after sperm ultra-rapid freezing. The kinetic parameters of sperm after ultra-rapid freezing and thawing were significantly reduced and apoptosis, ROS production and DFI were significantly increased. The addition of 40 µM MnTBAP improved the kinetic parameters, while it reduced apoptosis, ROS production, and DFI of sperm after ultra-rapid freezing and thawing (P < 0.05). Compared with the fresh semen, 1978 differential proteins were identified in the frozen-thawed sperm without MnTBAP and 1888 differential proteins were identified in the frozen-thawed sperm with MnTBAP (40 µM) added. The proteins affected during ultra-rapid freezing were mainly related to sperm metabolism, flagellar structure motility, apoptosis, intracellular signaling, capacitation and fertilization, while the addition of MnTBAP reduced the alterations of these proteins.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Humanos , Congelamento , Sêmen/metabolismo , Criopreservação/métodos , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Preservação do Sêmen/métodos , Espermatozoides , Motilidade dos Espermatozoides
5.
Reprod Biomed Online ; 46(3): 483-490, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642559

RESUMO

RESEARCH QUESTION: Non-invasive preimplantation genetic testing for aneuploidies (niPGT-A) avoids the possible detrimental impact of invasive PGT-A on embryo development and clinical outcomes. Does cell-free DNA (cfDNA) from spent blastocyst culture medium (BCM) reflect embryonic chromosome status better than trophectoderm (TE) biopsy? DESIGN: In this study, 35 donated embryos were used for research and the BCM, TE biopsy, inner cell mass (ICM) and residual blastocyst (RB) were individually picked up from these embryos. Whole genome amplification (WGA) was performed and amplified DNA was subject to next-generation sequencing. Chromosome status concordance was compared among the groups of samples. RESULTS: The WGA success rates were 97.0% (TE biopsy), 100% (ICM), 97.0% (RB) and 88.6% (BCM). Using ICM as the gold standard, the chromosomal ploidy concordance rates for BCM, TE biopsy and RB were 58.33% (14/24), 68.75% (22/32) and 78.57% (22/28); the diagnostic concordance rates were 83.33% (20/24), 87.50% (28/32) and 92.86% (26/28); and the sex concordance rates were 92.31% (24/26), 100% (32/32) and 100% (28/28), respectively. Considering RB the gold standard, the chromosome ploidy concordance rates for BCM and TE biopsy were 61.90% (13/21) and 81.48% (22/27); the diagnostic concordance rates were 71.43% (15/21) and 88.89% (24/27); and the sex concordance rates were 91.30% (21/23) and 100% (27/27), respectively. CONCLUSIONS: The results of niPGT-A of cfDNA of spent BCM are comparable to those of invasive PGT-A of TE biopsies. Modifications of embryo culture conditions and testing methods will help reduce maternal DNA contamination and improve the reliability of niPGT-A.


Assuntos
Ácidos Nucleicos Livres , Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Diagnóstico Pré-Implantação/métodos , Reprodutibilidade dos Testes , Blastocisto/patologia , Aneuploidia , Testes Genéticos/métodos , Biópsia
6.
Toxicon ; 221: 106964, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372154

RESUMO

Triptolide is a major active ingredient isolated from the traditional Chinese medicine Tripterygium wilfordii, which has anti-inflammatory, anti-cancer, and immunomodulatory effects. However, in clinical studies, triptolide has toxic side effects on the heart, kidney, liver and reproductive organs. With respect to female reproductive toxicity, damaging effects of triptolide on the ovary have been reported, but it has remained unknown whether oocytes are affected by triptolide. Therefore, this study established a concentration gradient of triptolide exposure in mice using 0 (control), 30, 60, and 90 µg triptolide/kg body weight/day administered by gavage. Triptolide administration for 28 d reduced body weight and ovarian weight and affected the developmental potential of oocytes. The triptolide-treated group exhibited meiotic failure of oocytes due to impaired spindle assembly, chromosome alignment, and tubulin stability. Triptolide was also found to induce mitochondrial dysfunction, autophagy and early apoptosis, iron homeostasis, and abnormal histone modifications. These adverse effects could be associated with oxidative stress induced by triptolide. In conclusion, our findings suggest detrimental effects of triptolide on mouse oocytes and, thus, on female reproduction.


Assuntos
Fenantrenos , Feminino , Camundongos , Animais , Fenantrenos/toxicidade , Oócitos , Estresse Oxidativo , Apoptose , Peso Corporal
7.
Reprod Biol ; 22(4): 100681, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35987159

RESUMO

Melatonin is a key neuroendocrine hormone that promotes spermatogenesis and sperm motility, but the underlying mechanisms remains poorly understood. In this study, we aimed to investigate the possible roles of m6A (N6--methyl-adenosine) in mediating melatonin-regulated spermatogonia activity alterations. In this study, mouse-derived GC-1 spermatogonia (spg) cell line was used as the in vitro cellular model. The viability, proliferation rates and apoptosis of spermatogonia were detected via CCK-8, Edu staining and flow cytometry respectively. Total m6A level was quantitated by dot blot, while mRNA and proteins contents in spermatogonia were measured by qRT-PCR and western blot respectively. Differentially expressed mRNAs were characterized by deep RNA sequencing method. Results showed that melatonin significantly promoted viability and proliferation rate while inhibited apoptosis in the GC-1 spg cells. The total m6A levels in GC-1 spg cells were also greatly increased by melatonin treatment, accompanied by remarkable expressional elevation of the m6A writer KIAA1429. Moreover, the regulation of GC-1 spg cell viability, proliferation and apoptosis by melatonin were greatly abrogated by KIAA1429 silencing but effectively strengthened by KIAA1429 overexpression. In addition, KIAA1429 overexpression regulates multiple biological process and signaling pathways in spermatogonia such as the PI3K/AKT signaling. The PI3K inhibitor LY294002 effectively mitigated the regulation of spermatogonia activity by KIAA1429 overexpression under melatonin treatment. Taken together, melatonin promotes spermatogonia activity via enhancing KIAA1429 expression and m6A RNA methylation to activate the downstream PI3K/AKT signaling pathway.


Assuntos
Adenosina , Melatonina , Proteínas de Ligação a RNA , Espermatogônias , Animais , Masculino , Camundongos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Melatonina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Motilidade dos Espermatozoides , Espermatogônias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo
8.
Front Nutr ; 9: 948604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873423

RESUMO

Background and Objective: There is keen interest in better understanding the impacts of alpha-linolenic acid (ALA), a plant-derived n-3 fatty acid, in ameliorating the development of cancer; however, results of several prospective cohorts present an inconsistent association between ALA intake and the incident colorectal cancer (CRC). We aimed to investigate the summary association of dietary intake and biomarkers of ALA with CRC risk based on the prospective cohorts. Methods: Pertinent prospective cohorts were identified in Cochrane Library, PubMed, and EMBASE from inception to February 2022. Study-specific risk ratios (RRs) with 95% confidence intervals (CIs) for comparing the top with the bottom quartiles of ALA levels were combined using a random-effects model. Nonlinear dose-response relationships of ALA levels in diet and blood with CRC risk were assessed using the restricted cubic spline models, respectively. Results: Over the duration of follow-up with a median of 9.3 years ranging from 1 to 28 years, 12,239 CRC cases occurred among 861,725 participants from 15 cohorts (11 studies on diet and 5 studies on biomarkers including 4 on blood and 1 on adipose tissue). The summary RR was 1.03 (95% CI: 0.97, 1.10; I2: 0.00%) for dietary intake and 0.83 (95% CI: 0.69, 0.99; I2: 0.00%) for biomarker. Each 0.1% increase in the levels of ALA in blood was associated with a 10% reduction in risk of CRC (summary RR: 0.90, 95% CI: 0.80, 0.99; I2: 38.60%), whereas no significant dose-response association was found between dietary intake of ALA and the incident CRC (p for non-linearity = 0.18; p for linearity = 0.24). Conclusions: Blood levels of ALA were inversely and linearly associated with the risk of CRC, which suggested that increased intake of ALA to improve circulating levels was beneficial for CRC prevention.

9.
Andrologia ; 54(7): e14438, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35585478

RESUMO

The aim was to investigate the influences of different sperm sources on clinical outcome and neonatal outcome of patients with intracytoplasmic sperm injection. We retrospectively analysed patients who underwent intracytoplasmic sperm injection in our reproductive centre from 2011 to 2020. We screened data on assisted reproductive outcomes from four groups of sources: testicular sperm, epididymal sperm, ejaculated sperm and donor sperm for analysis and divided the non-ejaculated group from the ejaculated group to explore their impact on clinical outcomes and neonatal outcomes. A total of 2139 cycles were involved in this study. There were significant differences in fertilisation rate (77.0% vs. 73.6%, p < .001), cleavage rate (97.4% vs. 94.4%, p < .001) and high-quality embryo rate (52.8% vs. 49.9%, p < .001) between the ejaculated and non-ejaculated sperm groups. There were no significant differences amongst the four groups in biochemical pregnancy rate, clinical pregnancy rate, abortion rate, live birth rate, male-female ratio and single-twin ratio. Different sperm sources did not affect the length, weight or physical defects of newborns amongst the groups. Sperm source did not affect pregnancy and neonatal outcomes of intracytoplasmic sperm injection in general.


Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Recuperação Espermática/efeitos adversos , Espermatozoides
10.
Chem Biol Interact ; 360: 109934, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429547

RESUMO

Acrylonitrile is an organic chemical synthetic monomer that is widely used in food packaging and manufacturing. Animal studies have reported that acrylonitrile is carcinogenic and toxic, but the effects on the female reproductive function in mammals are unknown. In the present study, we report that acrylonitrile treatment affects ovarian homeostasis in mice, resulting in impaired follicular development. Follicles in acrylonitrile-exposed mice exhibited high levels of inflammation and apoptosis, and acrylonitrile treatment interfered with oocyte development. Transcriptomics analysis showed that acrylonitrile altered the expression of oocyte genes related to apoptosis, oxidative stress, endoplasmic reticulum stress, and autophagy. Further molecular tests revealed that acrylonitrile induced early apoptosis, DNA damage, elevated levels of reactive oxygen species, endoplasmic reticulum abnormalities, and lysosomal aggregation. We also observed disruption of mitochondrial structure and distribution and depolarization of membrane potential. Finally, acrylonitrile treatment in female mice decreased the number and weight of offspring. Altogether, these findings suggest that acrylonitrile impairs the stability of the ovarian internal environment, which in turn affects oocyte development and reduces the number of offspring.


Assuntos
Acrilonitrila , Acrilonitrila/metabolismo , Acrilonitrila/toxicidade , Animais , Apoptose , Feminino , Inflamação/metabolismo , Mamíferos , Camundongos , Mitocôndrias/metabolismo , Oócitos
11.
Chemosphere ; 286(Pt 1): 131625, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303901

RESUMO

Captan is a non-systematic fungicide widely used in agricultural production, and its residues have been found in the environment and daily diet. Previous studies confirmed that captan exerts several toxic effects on tissues, but its effect on the mammalian female reproductive system is unclear. In current study, we reported that captan affected mouse ovarian homeostasis and disrupted female hormone receptor expression, leading to impaired follicular development. Ovarian follicles from the captan exposure group showed an increased level of inflammation, endoplasmic reticulum stress and apoptosis. In addition, captan exposure disrupted oocyte development. Transcriptomic analysis indicated that captan changed multiple genes expression in oocytes, including autophagy and apoptosis. Further molecular testing showed that captan induced oxidative stress and mitochondrial dysfunction, as indicated by the increased level of reactive oxygen species, disrupted mitochondrial structure and distribution, and depolarized membrane potential. Furthermore, captan triggered DNA damage, autophagy and early apoptosis, as shown by the enhanced levels of γ-H2AX, LC3, and Annexin-V and increased expression of related genes. Taken together, these results indicated that captan exposure impairs ovarian homeostasis and subsequently affects oocyte development.


Assuntos
Captana , Oócitos , Animais , Apoptose , Captana/metabolismo , Feminino , Homeostase , Camundongos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
12.
World J Clin Cases ; 9(33): 10315-10322, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34904105

RESUMO

BACKGROUND: Acute gastrointestinal bleeding (GIB) is a life-threatening medical emergency with high morbidity and mortality. Transcatheter embolization with endovascular coils under digital subtraction angiography guidance is a common and effective method for the treatment of GIB with high technical success rates. Duodenal ulcers caused by coils wiggled from the branch of the gastroduodenal artery, which is a rare complication, have not previously been reported in a patient with right intrathoracic stomach. CASE SUMMARY: A 62-year-old man had undergone thoracoscopy-assisted radical resection of esophageal cancer and gastroesophageal anastomosis 3 years ago, resulting in right intrathoracic stomach. He was admitted to the hospital 15 mo ago for dizziness and suffered acute GIB during his stay. Interventional surgery was urgently performed to embolize the branch of the gastroduodenal artery with endovascular coils. After 15 mo, the patient was re-admitted with a chief complaint of melena for 2 d, esophagogastroduodenoscopy and abdominal computed tomography revealed that some endovascular coils had migrated into the duodenal bulb, leading to a deep ulcer. Bleeding was controlled after conservative treatment. Seven months later, duodenal balloon dilatation was performed to relieve the stenosis after the removal of a few coils, and the patient was safely discharged with only one coil retained in the duodenum due to difficulties in complete removal and risk of bleeding. Mild melena recurred once during the long-term follow-up. CONCLUSION: Although rare, coil wiggle after interventional therapy requires careful attention, effective precautionary measures, and more secure alternative treatment methods.

13.
Front Pharmacol ; 12: 722779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512349

RESUMO

Accumulating evidence has demonstrated that benzo(a)pyrene (BaP) exposure adversely affects female reproduction, especially oocyte meiotic maturation and subsequent embryo development. Although we previously found that mogroside V (MV), a major bioactive component of S. grosvenorii, can protect oocytes from quality deterioration caused by certain stresses, whether MV can alleviate BaP exposure-mediated oocyte meiotic defects remains unknown. In this study, female mice were exposed to BaP and treated concomitantly with MV by gavage. We found that BaP exposure reduced the oocyte maturation rate and blastocyst formation rate, which was associated with increased abnormalities in spindle formation and chromosome alignment, reduced acetylated tubulin levels, damaged actin polymerization and reduced Juno levels, indicating that BaP exposure results in oocyte nucleic and cytoplasmic damage. Interestingly, MV treatment significantly alleviated all the BaP exposure-mediated defects mentioned above, indicating that MV can protect oocytes from BaP exposure-mediated nucleic and cytoplasmic damage. Additionally, BaP exposure increased intracellular ROS levels, meanwhile induced DNA damage and early apoptosis in oocytes, but MV treatment ameliorated these defective parameters, therefore it is possible that MV restored BaP-mediated oocyte defects by reducing oxidative stress. In summary, our findings demonstrate that MV might alleviate oocyte meiotic defects and quality deterioration in BaP-exposed mice.

14.
Ecotoxicol Environ Saf ; 225: 112807, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562787

RESUMO

Perfluorooctane sulphonate (PFOS), as a surfactant, is widely applied in the agricultural production activities and has become a potential menace to human health. The mechanism of its effect on the maturation of mammalian oocytes is unclear. This study explored the toxic effect of PFOS on mouse oocyte maturation in vitro. The results revealed that PFOS under a concentration of 600 µM could significantly reduce the polar body extrusion rate (PBE) of mouse oocytes and cause symmetrical cell division. Further experiments showed that PFOS resulted in the abnormal cytoskeleton of the oocytes, causing the abnormal spindles and misplaced chromosomes, as well as the impaired dynamics of actin. Moreover, PFOS exposure inhibited the process of oocyte meiosis, which reflected in the slower spindle migration and continuous activation of spindle assembly checkpoint (SAC), then ultimately increased the probability of aneuploidy. Most importantly, PFOS exposure reduced the quality of oocytes, specifically by disrupting the function of mitochondria, inducing cell oxidative stress, and triggering early apoptosis. Furthermore, the level of methylation of histones is additionally influenced. In summary, our findings showed that PFOS exposure interfered with the maturation of mouse oocytes through affecting cytoskeletal dynamics, meiotic progression, oocyte quality, and histone modifications.


Assuntos
Ácidos Alcanossulfônicos , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Animais , Apoptose , Fluorocarbonos , Camundongos , Oócitos/metabolismo , Estresse Oxidativo
15.
Ecotoxicol Environ Saf ; 224: 112634, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34392153

RESUMO

Nickel is a heavy metal element extensively distributed in the environment and widely used in modern life. Divalent nickel is one of the most widespread forms of nickel and has been reported as toxic to various tissues. However, whether exposure to divalent nickel negatively affects ovarian homeostasis and oocyte quality remains unclear. In this study, we found that 3 weeks of nickel sulfate exposure affected body growth and decreased the weight and coefficient of the ovary, and increased atretic follicles exhibiting enhanced apoptosis in granulosa cells. Further studies have found that nickel sulfate triggered ovarian fibrosis and inflammation via transforming growth factor-ß1 and nuclear factor-κB pathways, and reduced oocyte development ability. In addition, nickel sulfate increased the level of reactive oxygen species, which induced DNA damage and early apoptosis. Moreover, it was found that nickel sulfate caused damage to the mitochondria showing aberrant morphology, distribution and membrane potential while decreased levels of histone methylation. To summarize, our results indicated that nickel sulfate exposure triggered ovarian fibrosis and inflammation and caused structural and functional disorders of mitochondria in oocytes, which consequently disturbed ovarian homeostasis and follicle development and decreased oocyte quality.

16.
Toxicology ; 460: 152884, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358620

RESUMO

Perfluorodecanoic acid (PFDA) is a member of the perfluoroalkyl substances, which are toxic to organic functions. Recently, it has been found in follicular fluid, seriously interfering with reproduction. Follicular fluid provides the oocyte with necessary resources during the process of oocytes maturation. However, the effects of PFDA on the oocyte need investigation. Our study evaluated the impacts of PFDA on the meiosis and development potential of mouse oocytes by exposing oocytes to PFDA in vitro at 350, 400, and 450 µM concentrations. The results showed that exposure to PFDA resulted in the first meiotic prophase arrest by obstructing the function of the maturation-promoting factor. It also induced the dysfunction of the spindle assembly checkpoint, expedited the progression of the first meiotic process, and increased the risk of aneuploidy. The oocytes treated with PFDA had a broken cytoskeleton which also contributed to meiotic maturation failure. Besides, PFDA exposure caused mitochondria defections, increased the reactive oxygen species level in oocytes, and consequently induced oocyte apoptosis. Moreover, PFDA produced epigenetic modifications in oocytes and increased the frequency of mature oocytes with declined development potential. In summary, our data indicated that PFDA disturbs the meiotic process and induces oocyte quality deterioration.


Assuntos
Ácidos Decanoicos/toxicidade , Fluorocarbonos/toxicidade , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Fator Promotor de Maturação/metabolismo , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos ICR
17.
Front Cell Dev Biol ; 9: 639691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763421

RESUMO

Accumulating evidence has demonstrated that lipopolysaccharide (LPS) compromises female reproduction, especially oocyte maturation and competence. However, methods to protect oocyte quality from LPS-induced deterioration remain largely unexplored. We previously found that mogroside V (MV) can promote oocyte maturation and embryonic development. However, whether MV can alleviate the adverse effects of LPS exposure on oocyte maturation is unclear. Thus, in this study, we used porcine oocytes as a model to explore the effects of MV administration on LPS-induced oocyte meiotic defects. Our findings show that supplementation with MV protected oocytes from the LPS-mediated reduction in the meiotic maturation rate and the subsequent blastocyst formation rate. In addition, MV alleviated the abnormalities in spindle formation and chromosome alignment, decrease in α-tubulin acetylation levels, the disruption of actin polymerization, and the reductions in mitochondrial contents and lipid droplet contents caused by LPS exposure. Meanwhile, LPS reduced m6A levels in oocytes, but MV restored these epigenetic modifications. Furthermore, MV reduced reactive oxygen species (ROS) levels and early apoptosis in oocytes exposed to LPS. In summary, our study demonstrates that MV can protect oocytes from LPS-induced meiotic defects in part by reducing oxidative stress and maintaining m6A levels.

18.
Theriogenology ; 164: 74-83, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561696

RESUMO

Fas binding factor 1 (Fbf1) is one of the distal appendage proteins in the centriole, located at its distal and proximal ends. It influences the duplication and separation of centrosomes, thereby affecting the progression of the cell cycle during mitosis. However, the function of Fbf1 in meiosis has remained unclear. To explore the role of Fbf1 in the in vitro maturation of mouse oocyte, immunofluorescence staining was used to examine the Fbf1 location in the oocyte and their phenotype after protein deletion. Western blot was used to examine the protein abundance. This study showed that mouse oocytes express Fbf1 which locates at the spindle poles and around the microtubules. Through taxol and nocodazole treatment, and microinjection of siRNA, it was demonstrated that Fbf1 had an important role in the spindle assembly and chromosome separation during mouse oocyte meiosis In particular, microinjection of Fbf1-siRNA resulted in severe abnormalities in the spindle and chromosome arrangement, decreased aggregation of microtubules, disrupted the first oocyte meiosis, and the extrusion of the first polar body. Furthermore, in the Fbf1-siRNA group, there was reduced expression of Plk1 and its agglutination at the spindle poles, along with retarded chromosome segregation due to the activation of the spindle assembly checkpoint (SAC) component BubR1. These results indicate that Fbf1 may function in microtubule depolymerization and agglutination, control the microtubule dynamics, spindle assembly and chromosome arrangement and, thus, influence the mouse oocyte meiotic maturation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/metabolismo , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático , Animais , Camundongos , Microtúbulos , Nocodazol , Oócitos , Quinase 1 Polo-Like
19.
J Agric Food Chem ; 69(6): 1942-1952, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33533595

RESUMO

Neonicotinoids are the most widely used insecticides in modern agriculture, and their residues have been found in the environment and food. Previous studies reported that neonicotinoids exert toxic effects in various tissues, but whether they interfered with the female reproductive process remains unknown. In our present research, thiamethoxam was selected as a representative neonicotinoid to establish a mouse toxicity model with gavage. We found that thiamethoxam decreased the ovarian coefficient and disrupted the expression of female hormone receptors, subsequently affecting follicle development. Ovarian granulosa cells from the thiamethoxam exposure group underwent a high level of apoptosis. Using transcriptome analysis, we showed that thiamethoxam exposure altered the expression of multiple oocyte genes related to inflammation, apoptosis, and endoplasmic reticulum stress. Thiamethoxam also adversely affected oocyte and embryo development. Western blotting and fluorescence staining results confirmed that thiamethoxam affected the integrity of DNA, triggered apoptosis, promoted oxidative stress and endoplasmic reticulum stress, and impaired mitochondrial function. Collectively, our results indicated that thiamethoxam exposure disrupts ovarian homeostasis and decreases oocyte quality via endoplasmic reticulum stress and apoptosis induction.


Assuntos
Estresse do Retículo Endoplasmático , Inseticidas , Animais , Feminino , Inseticidas/toxicidade , Camundongos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Oócitos , Tiametoxam
20.
J Int Med Res ; 49(2): 300060520986677, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33528281

RESUMO

We describe herein a 37-year-old woman with a 2-week history of melena who was eventually diagnosed with ileal haemolymphangioma, a rare benign tumour. Local mucosal congestion and swelling were found through single-balloon enteroscopy, which showed an irregular protuberance approximately 10 cm long, located 3.2 m from the Treitz ligament. We performed a laparoscopic-assisted partial resection of the small intestine combined with intestinal adhesiolysis. According to postoperative pathology, the final diagnosis was ileal haemolymphangioma with haemorrhage.


Assuntos
Hemangioma , Laparoscopia , Linfangioma , Adulto , Feminino , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/cirurgia , Hemangioma/complicações , Hemangioma/diagnóstico por imagem , Hemangioma/cirurgia , Humanos , Intestino Delgado , Linfangioma/diagnóstico por imagem , Linfangioma/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...